Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot

  • Conference paper
  • First Online:
Experimental Robotics VII

Abstract

This paper presents the first evidence that the Spring Loaded Inverted Pendulum (SLIP) may be “anchored” in our recently designed compliant leg hexapod robot, RHex. Experimentally measured RHex center of mass trajectories are fit to the SLIP model and an analysis of the fitting error is performed. The fitting results are corroborated by numerical simulations. The “anchoring” of SLIP dynamics in RHex offers exciting possibilities for hierarchical control of hexapod robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saranli U, Buehler M and Koditschek D E 2000 Design, Modeling and Preliminary Control of a Compliant Hexapod Robot. Proc. IEEE Int. Conf. Rob. Aut. 3:2589–2596.

    Google Scholar 

  2. Blickhan R and Pull R 1993 Similarity in multilegged locomotion: Bouncing like a monopode. J. J. Comp. Physiol. A 173, 509–517.

    Google Scholar 

  3. Raibert M 1986 Dynamic Robots that Balance, MIT Press, Cambridge.

    Google Scholar 

  4. Schwind W J and Koditschek D E 2000 Approximating the Stance Map of a 2 DOF Monoped Runner. Journal of Nonlinear Science 10:533–568.

    Article  MATH  MathSciNet  Google Scholar 

  5. Saranli U, Schwind W J, and Koditschek D E May 1998 Toward the Control of Multi-Jointed, Monoped Runner. IEEE Int. Conf. on Rob. and Aut. Leuven, Belgium pp 2676–2682.

    Google Scholar 

  6. Full R J and Koditschek D E 1999 Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land. J. Exp. Bio. 202:3325–3332.

    Google Scholar 

  7. Koditschek D E and Bühler M Dec 1991 Analysis of a simplified hopping robot. International Journal of Robotics Research 10(6):587–605.

    Article  Google Scholar 

  8. Bühler M, Koditschek D E, and Kindlmann P J 1990 A Family of Robot Control Strategies for Intermittent Dynamical Environments. IEEE Control Systems Magazine 10(2):16–22.

    Article  Google Scholar 

  9. Rizzi A A, Whitcomb L L, and Koditschek D E 1992 Distributed Real-Time Control of a Spatial Robot Juggler. IEEE Computer 25(5):12–24.

    Google Scholar 

  10. Nakanishi J, Fukuda T, and Koditschek D E 2000 A Brachiating Robot Controller. IEEE Trans. Rob. Aut. 16(2):109–123.

    Article  Google Scholar 

  11. Schwind W J 1998 Spring Loaded Inverted Pendulum Running: A Plant Model. PhD thesis, University of Michigan.

    Google Scholar 

  12. Full R J and Farley C T 2000 Musculoskeletal Dynamics in Rhythmic Systems: A Comparative Approach to Legged Locomotion. In: Winter, Crago (eds) Biomechanics & Neural Control of Posture & Movement Springer Verlag, New York, pp 192–205.

    Google Scholar 

  13. Hogan N Mar 1985 Impedance Control: An Approach to Manipulation. ASME Journal of Dynamic Systems, Measurement, and Control 107:1–7.

    Article  MATH  Google Scholar 

  14. Pratt J and Pratt G May 1998 Intuitive Control of a Planar Bipedal Walking Robot ICRA Leuven, Belgium pp 2014–2021.

    Google Scholar 

  15. Saranli U 2000 SimSect Hybrid Dynamical Simulation Environment. University of Michigan Technical Report CSE-TR-437-00.

    Google Scholar 

  16. Alexander R McN 1992 A Model of Bipedal Locomotion on Compliant Legs Phil. Trans.: Biol. Sc. 338(1284):189–198.

    Article  Google Scholar 

  17. Carver S 2000 The Limits of Deadbeat Control for the Spatial SLIP. in preparation.

    Google Scholar 

  18. Schmitt J and Holmes P 2000 Mechanical models for insect locomotion: Dynamics and stability in the horizontal plane I: Theory; II: Application. Biological Cybernetics 83(6):501–515 and 517–527.

    Article  MATH  Google Scholar 

  19. Ruina A, personal communication.

    Google Scholar 

  20. Burridge R R, Rizzi A A, and Koditschek D E 1999 Sequential Composition of Dynamically Dexterous Robot Behaviors. Int. J. Rob. Res. 18(6):534–555.

    Article  Google Scholar 

  21. Klavins E and Koditschek D E 2000 A formalism for the composition of concurrent robot behaviors. Proc. IEEE Conf. Rob. and Aut. 4:3395–3402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altendorfer, R. et al. (2001). Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot. In: Rus, D., Singh, S. (eds) Experimental Robotics VII. Lecture Notes in Control and Information Sciences, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45118-8_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45118-8_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42104-7

  • Online ISBN: 978-3-540-45118-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics