Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Higher-Order Transformation of Logic Programs

  • Conference paper
  • First Online:
Logic Based Program Synthesis and Transformation (LOPSTR 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2042))

Abstract

It has earlier been assumed that a compositional approach to algorithm design and program transformation is somehow unique to functional programming. Elegant theoretical results codify the basic laws of algorithmics within the functional paradigm and with this paper we hope to demonstrate that some of the same techniques and results are applicable to logic programming as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Baudinet. Logic Programming Semantics Techniques and Applications. PhD thesis, Stanford Univeristy, 1989.

    Google Scholar 

  2. R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

    Google Scholar 

  3. E. Boiten. The many disguises of accumulation. Technical Report 91-26, University of Nijmegen, 1991.

    Google Scholar 

  4. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.

    Google Scholar 

  5. O. de Moor and G. Sittampalam. Generic program transformation. In Procs. 3rd International Summer School on Advanced Functional Programming, pages 116–149, Springer LNCS 1608, 1998.

    Google Scholar 

  6. R. Hinze. Prological features in a functional setting-axioms and implementations. In Proc. of FLOPS’98, pages 98–122, World Scientific, Japan, 1998.

    Google Scholar 

  7. A. Pettorossi and M. Proietti. In Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5, chapter Transformation of Logic Programs, pages 697–787. Oxford University Press, 1998.

    MathSciNet  Google Scholar 

  8. A. Pettorossi and M. Proietti. Program derivation via list introduction. In Proceedings of IFIP TC2 Working Conference on Algorithmic Languages and Calculi, pages 296–323. Chapman and Hall, Le bischenberg, France, 1997.

    Google Scholar 

  9. B. J. Ross. Using algebraic semantics for proving Prolog termination and transformation. In Proceedings of the ALPUK 1991, pages 135–155. Edinburgh, Springer, 1991.

    Google Scholar 

  10. S. Seres. The Algebra of Logic Programming. PhD thesis, Oxford University, 2001 (to appear).

    Google Scholar 

  11. S. Seres and J. M. Spivey. Functional Reading of Logic Programs. In Journal of Universal Computer Science, volume 6(4), pages 433–446, 1999.

    MathSciNet  Google Scholar 

  12. S. Seres, J. M. Spivey, and C. A. R. Hoare, Algrebra of Logic Programming Proceedings of ICLP’99, pages 184–199, Las Cruces, USA, The MIT Press, 1999.

    Google Scholar 

  13. J. M. Spivey. The monad of breadth-first search. Journal of Functional Programming, volume 10(4), pages 397–408, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Wand. Continuation-based program transformation strategies. Journal of the ACM, volume 27(1), pages 164–180, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Wand. A semantic algebra for logic programming. Technical Report 148, Indiana University Computer Science Department, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seres, S., Spivey, M. (2001). Higher-Order Transformation of Logic Programs. In: Logic Based Program Synthesis and Transformation. LOPSTR 2000. Lecture Notes in Computer Science, vol 2042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45142-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45142-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42127-6

  • Online ISBN: 978-3-540-45142-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics