Abstract
This paper reports a Cellular Automata (CA )model for pattern recognition.The special class of CA referred to as GMACA (Generalized Multiple Attractor Cellular Automata ),is employed to design the CA based associative memory for pattern recognition.The desired GMACA are evolved through the implementation of genetic algorithm (GA).An efficient scheme to ensure fast convergence of GA is also reported.Experimental results conform the fact that the GMACA based pattern recognizer is more powerful than the Hopfield network for memorizing arbitrary patterns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Hertz, A. Kroghand R.G. Palmer, “Introduction to the theory of Neural computation”, Santa Fe institute studies in the sciences of complexity Addison Wesley1991.
M. Chady and R. Poli,“Evoluation of Cellular-automaton-based Associative Memories” Technical Report no.CSRP-97-15,May 1997.
J.J. Hopfield, “Pattern Recognition computation using action otential timings for stimulus representations,” Nature,376:33–36;1995.
E. Jen, “Invariant strings and Pattern Recognizing properties of 1D CA” Journal of statistical physics,43,1986.
M. Sipper, “Co-evolving Non-Uniform Cellular Automata to Perform Computations” Physica D,92:193–208,1996
M. Mitchell, P.T. Hraber and J.P. Crutchfield, “Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations” Complex Systems,7:89–130,1993.
S. Wolfram, “Theory and application of Cellular Automata” World Scientific, 1986.
W. Li, N.H. Packard and C.G. Langton, “Transition Phenomena in Cellular Automata Rule Space Physica D,45;1990.
P. Pal Chaudhuri, D Roy Chowdhury, S. Nandi and S.Chatterjee, “Additive Cellular Automata,Theory and Applications,VOL.1” IEEE Computer Society Press, Los Alamitos,California.
Wuensche, A.,and M.J. Lesser,“The Global Dynamics of Cellular Automata” Santa Fe Institute Studies in the Sciences of Complexity Addison-Wesley 1992.
J.H. Holland,“Adaptation in natural and artificial systems” The University of Michigan Press, Ann Arbor,MI,1975.
J.E. Myers,“Random boolean Networks-Three recent results”, Private communication;1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ganguly, N., Das, A., Maji, P., Sikdar, B.K., Pal Chaudhuri, P. (2001). Evolving Cellular Automata Based Associative Memory for Pattern Recognition. In: Monien, B., Prasanna, V.K., Vajapeyam, S. (eds) High Performance Computing — HiPC 2001. HiPC 2001. Lecture Notes in Computer Science, vol 2228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45307-5_11
Download citation
DOI: https://doi.org/10.1007/3-540-45307-5_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43009-4
Online ISBN: 978-3-540-45307-9
eBook Packages: Springer Book Archive