Abstract
In this paper, we consider the structure of compactly supported wavelets. And we prove that any wavelet matrix (the polyphase matrix of the scaling filter and wavelet filters) can be factored as the product of fundamental biorthgonal matrices and a constant valued matrix.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bi N., Dai X. and Sun Q., Construction of compactly supported M-band wavelets, Appl. Comp. Harmonic Anal. 6(1999), pp.113–131.
Chui C. K. and Lian J., Construction of compactly supported symmetric and antisymmetric orthogonal wavelets with scale=3, Appl. Comput. Harmonic Anal., 2(1995), pp.21–51.
Cohen A., Daubechies I. and Feauveau J. C., Biorthogonal basis of compactly supported Wavelets, Commun. Pure Appl. Math., 45(5)(1992), pp.485–560.
Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, PA, 1992.
Han B., Symmetric orthogonal scaling functions and wavelets with dilation factor 4, Adv. Compt. Math., 8(1998), pp.221–247.
Heller D. N., Rank m wavelets with n vanish moments, SIAM J. Matrix Anal. 16(2)(1994), pp.502–519.
Heller P. N., Resnikoff H. L. and Wells R. O. Jr., Wavelet matrices and the representation of discrete functions, in Wavelet-A Tutorial in theory and applications, C. K. Chui (ed.), Academic Press, Inc.(1992), 15–50.
Ji H. and Shen Z., Compactly supported (bi)orthogonal wavelets generated by interplatory refinable functions, Adv. Comput. Math., 111999, pp.81–104.
Soman A. K., Vaidyanathan P.P. and Nguyen T.Q., Linear phase paraunitary filter banks: theory, factorization and designs, IEEE Trans. Signal Processing 41(1993), pp.3480–3496.
Soardi P., Biorthogonal M-channel compactly supported wavelets, Constr. Approx., 16(2000), pp.283–311.
Sun Q. and Zhang Z., M-Band scaling function with filter having vanishing moments two and minimal length, J. Math. Anal. 222(1998), pp.225–243.
Resnikoff H. L., Tian J. and Wells R. O. Jr, An algebraic structure of orthogonal wavelet space, Appl. Comput. Harmon. Anal., 8(2000), pp. 223–248.
Vaidyanathan P. P., Multi-rate systems and filter banks, Prentice-Hall, Englewood Cliffs, NJ, 1993.
Vetterli M. and Herley C., Wavelet and filter banks: Theory and design, IEEE Trans. Acounst. Speech SignaL Processing, 40(1992), pp. 2207–2232.
Welland G. V. and Lundberg M., Construction of compact p-wavelets, Constr. Approx. 9(1993), pp.347–370.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Z., Huang, D. (2001). Parameterizations of M-Band Biorthogonal Wavelets. In: Tang, Y.Y., Yuen, P.C., Li, Ch., Wickerhauser, V. (eds) Wavelet Analysis and Its Applications. WAA 2001. Lecture Notes in Computer Science, vol 2251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45333-4_55
Download citation
DOI: https://doi.org/10.1007/3-540-45333-4_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43034-6
Online ISBN: 978-3-540-45333-8
eBook Packages: Springer Book Archive