Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parameterizations of M-Band Biorthogonal Wavelets

  • Conference paper
  • First Online:
Wavelet Analysis and Its Applications (WAA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2251))

Included in the following conference series:

  • 827 Accesses

Abstract

In this paper, we consider the structure of compactly supported wavelets. And we prove that any wavelet matrix (the polyphase matrix of the scaling filter and wavelet filters) can be factored as the product of fundamental biorthgonal matrices and a constant valued matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bi N., Dai X. and Sun Q., Construction of compactly supported M-band wavelets, Appl. Comp. Harmonic Anal. 6(1999), pp.113–131.

    Article  MATH  MathSciNet  Google Scholar 

  2. Chui C. K. and Lian J., Construction of compactly supported symmetric and antisymmetric orthogonal wavelets with scale=3, Appl. Comput. Harmonic Anal., 2(1995), pp.21–51.

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen A., Daubechies I. and Feauveau J. C., Biorthogonal basis of compactly supported Wavelets, Commun. Pure Appl. Math., 45(5)(1992), pp.485–560.

    Article  MATH  MathSciNet  Google Scholar 

  4. Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, PA, 1992.

    MATH  Google Scholar 

  5. Han B., Symmetric orthogonal scaling functions and wavelets with dilation factor 4, Adv. Compt. Math., 8(1998), pp.221–247.

    Article  MATH  Google Scholar 

  6. Heller D. N., Rank m wavelets with n vanish moments, SIAM J. Matrix Anal. 16(2)(1994), pp.502–519.

    Article  MathSciNet  Google Scholar 

  7. Heller P. N., Resnikoff H. L. and Wells R. O. Jr., Wavelet matrices and the representation of discrete functions, in Wavelet-A Tutorial in theory and applications, C. K. Chui (ed.), Academic Press, Inc.(1992), 15–50.

    Google Scholar 

  8. Ji H. and Shen Z., Compactly supported (bi)orthogonal wavelets generated by interplatory refinable functions, Adv. Comput. Math., 111999, pp.81–104.

    Google Scholar 

  9. Soman A. K., Vaidyanathan P.P. and Nguyen T.Q., Linear phase paraunitary filter banks: theory, factorization and designs, IEEE Trans. Signal Processing 41(1993), pp.3480–3496.

    Article  MATH  Google Scholar 

  10. Soardi P., Biorthogonal M-channel compactly supported wavelets, Constr. Approx., 16(2000), pp.283–311.

    Article  MathSciNet  Google Scholar 

  11. Sun Q. and Zhang Z., M-Band scaling function with filter having vanishing moments two and minimal length, J. Math. Anal. 222(1998), pp.225–243.

    Article  MATH  MathSciNet  Google Scholar 

  12. Resnikoff H. L., Tian J. and Wells R. O. Jr, An algebraic structure of orthogonal wavelet space, Appl. Comput. Harmon. Anal., 8(2000), pp. 223–248.

    Article  MathSciNet  Google Scholar 

  13. Vaidyanathan P. P., Multi-rate systems and filter banks, Prentice-Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  14. Vetterli M. and Herley C., Wavelet and filter banks: Theory and design, IEEE Trans. Acounst. Speech SignaL Processing, 40(1992), pp. 2207–2232.

    Article  MATH  Google Scholar 

  15. Welland G. V. and Lundberg M., Construction of compact p-wavelets, Constr. Approx. 9(1993), pp.347–370.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Z., Huang, D. (2001). Parameterizations of M-Band Biorthogonal Wavelets. In: Tang, Y.Y., Yuen, P.C., Li, Ch., Wickerhauser, V. (eds) Wavelet Analysis and Its Applications. WAA 2001. Lecture Notes in Computer Science, vol 2251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45333-4_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-45333-4_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43034-6

  • Online ISBN: 978-3-540-45333-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics