Abstract
In this article we present an application of the Ant Colony Optimization (ACO) metaheuristic to the single machine total weighted tardiness problem. First, we briefly discuss the constructive phase of ACO in which a colony of artificial ants generates a set of feasible solutions. Then, we introduce some simple but very effective local search. Last, we combine the constructive phase with local search obtaining a novel ACO algorithm that uses a heterogeneous colony of ants and is highly effective in finding the best-known solutions on all instances of a widely used set of benchmark problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T. S. Abdul-Razaq, C. N. Potts, and L. N. Van Wassenhove. A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics, 26:235–253, 1990.
A. Bauer, B. Bullnheimer, R. F. Haiti, and C. Strauss. An ant colony optimization approach for the single machine total tardiness problem. In Proc. of CEC’99, pages 1445–1450. IEEE Press, Piscataway, NJ, 1999.
A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for Job-Shop Scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 34(1 ):39–53, 1994.
R. K. Congram, C. N. Potts, and S. L. Van de Velde. An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. Technical report, Faculty of Mathematical Studies, University of Southampton, December 1998.
H. A. J. Crauwels, C. N. Potts, and L. N. Van Wassenhove. Local search heuristics for the single machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 10(3):341–350, 1998.
F. Delia Croce, R. Tadei, P. Baracco, and A. Grosso. A new decomposition approach for the single machine total tardiness scheduling problem. Journal of the Operational Research Society, 49:1101–1106, 1998.
G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.
M. Dorígo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, 1999.
M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5(2):137–172, 1999.
M. Dorigo and L.M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, l(l):53–66, 1997.
L. M Gambardella and M. Dorigo. Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3), 2000.
L. M. Gambardella, È. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76. McGraw Hill, 1999.
L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50:167–176, 1999.
T. Hogg, B. A. Huberman, and C. P. Williams (Guest Editors). Special volume on frontiers in problem solving: Phase transitions and complexity. Artificial Intelligence, 81(1–2), 1996.
H. H. Hoos and T. Stützle. Evaluating Las Vegas algorithms — pitfalls and remedies. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence 1998, pages 238–245. Morgan Kaufmann Publishers, 1998.
J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problem. In P. L. Hammer, E. L. Johnson, B. H. Korte, and Nemhauser G. L., editors, Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics, pages 343–362. North-Holland, Amsterdam, NL, 1977.
V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.
H. Matsuo, C. J. Suh, and R. S. Sullivan. A controlled search simulated annealing method for the single machine weighted tardiness problem. Working paper 87-12-2, Department of Management, University of Texas at Austin, TX, 1987.
N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers & Operations Research, 24:1097–1100, 1997.
T. E. Morton, R. M. Rachamadugu, and A. Vepsalainen. Accurate myopic heuristics for tardiness scheduling. GSIA Working Paper 36-83-84, Carnegie-Mellon University, PA, 1984.
M. Pinedo. Scheduling — Theory, Algorithms, and Systems. Prentice Hall, 1995.
C. N. Potts and L. N. Van Wassenhove. Single machine tardiness sequencing heuristics. HE Transactions, 23:346–354, 1991.
C. R. Reeves. Landscapes, operators and heuristic search. To appear in Annals of Operations Research, 2000.
T. Stützle. An Ant Approach to the Flow Shop Problem. In Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), volume 3, pages 1560–1564. Verlag Mainz, Aachen, 1997.
T. Stützle. Local Search Algorithms for Combinatorial Problems — Analysis, Improvements, and New Applications. PhD thesis, Darmstadt University of Technology, Department of Computer Science, 1998.
T. Stützle and M. Dorigo. ACO algorithms for the quadratic assignment problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 33–50. McGraw Hill, 1999.
T. Stützle and H. H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems, 16(8): 889–914, 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
den Besten, M., Stützle, T., Dorigo, M. (2000). Ant Colony Optimization for the Total Weighted Tardiness Problem. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_60
Download citation
DOI: https://doi.org/10.1007/3-540-45356-3_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41056-0
Online ISBN: 978-3-540-45356-7
eBook Packages: Springer Book Archive