Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ant Colony Optimization for the Total Weighted Tardiness Problem

  • Conference paper
Parallel Problem Solving from Nature PPSN VI (PPSN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Included in the following conference series:

Abstract

In this article we present an application of the Ant Colony Optimization (ACO) metaheuristic to the single machine total weighted tardiness problem. First, we briefly discuss the constructive phase of ACO in which a colony of artificial ants generates a set of feasible solutions. Then, we introduce some simple but very effective local search. Last, we combine the constructive phase with local search obtaining a novel ACO algorithm that uses a heterogeneous colony of ants and is highly effective in finding the best-known solutions on all instances of a widely used set of benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. S. Abdul-Razaq, C. N. Potts, and L. N. Van Wassenhove. A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics, 26:235–253, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bauer, B. Bullnheimer, R. F. Haiti, and C. Strauss. An ant colony optimization approach for the single machine total tardiness problem. In Proc. of CEC’99, pages 1445–1450. IEEE Press, Piscataway, NJ, 1999.

    Google Scholar 

  3. A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for Job-Shop Scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 34(1 ):39–53, 1994.

    MATH  Google Scholar 

  4. R. K. Congram, C. N. Potts, and S. L. Van de Velde. An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. Technical report, Faculty of Mathematical Studies, University of Southampton, December 1998.

    Google Scholar 

  5. H. A. J. Crauwels, C. N. Potts, and L. N. Van Wassenhove. Local search heuristics for the single machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 10(3):341–350, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Delia Croce, R. Tadei, P. Baracco, and A. Grosso. A new decomposition approach for the single machine total tardiness scheduling problem. Journal of the Operational Research Society, 49:1101–1106, 1998.

    Article  MATH  Google Scholar 

  7. G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

    MATH  Google Scholar 

  8. M. Dorígo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, 1999.

    Google Scholar 

  9. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5(2):137–172, 1999.

    Article  Google Scholar 

  10. M. Dorigo and L.M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, l(l):53–66, 1997.

    Article  Google Scholar 

  11. L. M Gambardella and M. Dorigo. Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3), 2000.

    Google Scholar 

  12. L. M. Gambardella, È. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76. McGraw Hill, 1999.

    Google Scholar 

  13. L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50:167–176, 1999.

    Article  MATH  Google Scholar 

  14. T. Hogg, B. A. Huberman, and C. P. Williams (Guest Editors). Special volume on frontiers in problem solving: Phase transitions and complexity. Artificial Intelligence, 81(1–2), 1996.

    Google Scholar 

  15. H. H. Hoos and T. Stützle. Evaluating Las Vegas algorithms — pitfalls and remedies. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence 1998, pages 238–245. Morgan Kaufmann Publishers, 1998.

    Google Scholar 

  16. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problem. In P. L. Hammer, E. L. Johnson, B. H. Korte, and Nemhauser G. L., editors, Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics, pages 343–362. North-Holland, Amsterdam, NL, 1977.

    Google Scholar 

  17. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.

    MATH  MathSciNet  Google Scholar 

  18. H. Matsuo, C. J. Suh, and R. S. Sullivan. A controlled search simulated annealing method for the single machine weighted tardiness problem. Working paper 87-12-2, Department of Management, University of Texas at Austin, TX, 1987.

    Google Scholar 

  19. N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers & Operations Research, 24:1097–1100, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. E. Morton, R. M. Rachamadugu, and A. Vepsalainen. Accurate myopic heuristics for tardiness scheduling. GSIA Working Paper 36-83-84, Carnegie-Mellon University, PA, 1984.

    Google Scholar 

  21. M. Pinedo. Scheduling — Theory, Algorithms, and Systems. Prentice Hall, 1995.

    Google Scholar 

  22. C. N. Potts and L. N. Van Wassenhove. Single machine tardiness sequencing heuristics. HE Transactions, 23:346–354, 1991.

    Google Scholar 

  23. C. R. Reeves. Landscapes, operators and heuristic search. To appear in Annals of Operations Research, 2000.

    Google Scholar 

  24. T. Stützle. An Ant Approach to the Flow Shop Problem. In Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), volume 3, pages 1560–1564. Verlag Mainz, Aachen, 1997.

    Google Scholar 

  25. T. Stützle. Local Search Algorithms for Combinatorial Problems — Analysis, Improvements, and New Applications. PhD thesis, Darmstadt University of Technology, Department of Computer Science, 1998.

    Google Scholar 

  26. T. Stützle and M. Dorigo. ACO algorithms for the quadratic assignment problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 33–50. McGraw Hill, 1999.

    Google Scholar 

  27. T. Stützle and H. H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems, 16(8): 889–914, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

den Besten, M., Stützle, T., Dorigo, M. (2000). Ant Colony Optimization for the Total Weighted Tardiness Problem. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_60

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics