Abstract
In this paper we describe a vision system based on the use of both an omnidirectional vision sensor and a standard CCD camera. This hybrid system is aimed at compensating for drawbacks of both sensors and at offering new opportunities deriving by their joint use. It can be used in several tasks, such as implementation of peripheral/foveal vision strategies, stereo vision, etc. The paper describes the device on which the vision system is based and its use as a stereo system for obstacle detection in a semi-structured environment, based on a perspective removal algorithm.
Preview
Unable to display preview. Download preview PDF.
References
I. Bloch. Information combination operators for data fusion: a comparative review with classification. In Proc. of the SPIE, volume 2315, pages 148–159, 1994.
O. Trullier, S. I. Wiener, A. Berthoz, and J. A. Meyer. Biologically based artificial navigation systems: review and prospects. Progress in Neurobiology, 51(5):483–544, 1997.
J. Zhang, A. Knoll, and V. Schwert. Situated neuro-fuzzy control for vision-based robot localisation. Robotics and Autonomous Systems, 28:71–82, 1999.
S. K. Nayar. Omnidirectional vision. In Robotics Research. 8th International Symposium, pages 195–202, 1998.
T. Svoboda and T. Pajdla. Panoramic cameras for 3D computation. In Proc. Czech Pattern Recognition Workshop, pages 63–70, 2000.
R. A. Hicks and R. Bajcsy. Reflective surfaces as computational sensors. In Proc. 2nd Workshop on Perception for Mobile Agents, pages 82–86, 1999.
F. Marchese and D. Sorrenti. Omni-directional vision with a multi-part mirror. In 4th Int. Workshop on RoboCup, pages 289–298, 2000.
C. Marques and P. Lima. A localization method for a soccer robot using a vision-based omni-directional sensor. In Proc. of EuroRoboCup Workshop, Amsterdam, The Netherlands, June 2000. available in electronic form only.
L. Delahoche, B. Maric, C. Pégard, and P. Vasseur. A navigation system based on an omnidirectional sensor. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 718–724, 1997.
J. S. Gutmann, T. Weigel, and B. Nebel. Fast, accurate, and robust selflocalization in polygonal environments. In Proc. 1999 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 1412–1419, 1999.
M. Plagge, R. Günther, J. Ihlenburg, D. Jung, and A. Zell. The Attempto RoboCup robot team: Team-Tuebingen. In RoboCup-99 Team Descriptions, pages 200–209, 1999. available electronically at http://www.ep.liu.se/ea/cis/1999/006/cover.html.
A. Clérentin, L. Delahoche, C. Pégard, and E. Brassart-Gracsy. A localization method based on two omnidirectional perception systems cooperation. In Proc. 2000 ICRA. Millennium Conference, volume 2, pages 1219–1224, 2000.
A. Bonarini, P. Aliverti, and M. Lucioni. An omnidirectional vision sensor for fast tracking for mobile robots. IEEE Trans. on Instrumentation and Measurement, 49(3):509–512, 2000.
H. A. Mallot, H. H. Bülthoff, J. J. Little, and S. Bohrer. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics, 64:177–185, 1991.
S. Bohrer, T. Zielke, and V. Freiburg. An integrated obstacle detection framework for intelligent cruise control. In Proc. Intelligent Vehicles’ 95 Symp., pages 276–281, 1995.
K. Onoguchi, N. Takeda, and M. Watanabe. Planar projection stereopsis method for road extraction. IEICE Trans. Inf. & Syst., E81-D(9):1006–1018, 1998.
M. Bertozzi, A. Broggi, and A. Fascioli. Stereo inverse perspective mapping: Theory and applications. Image and Vision Computing Journal, 16(8):585–590, 1998.
C. Drocourt, L. Delahoche, C. Pégard, and C. Cauchois. Localization method based on omnidirectional stereoscopic vision and dead-reckoning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 960–965, 1999.
G. Adorni, S. Cagnoni, and M. Mordonini. Cellular automata based inverse perspective transform as a tool for indoor robot navigation. In E. Lamma and P. Mello, editors, AI*IA99:Advances in Artificial Intelligence, number 1792 in LNCS, pages 345–355. Springer, 2000.
G. Adorni, S. Cagnoni, and M. Mordonini. An efficient perspective effect removal technique for scene interpretation. In Proc. Asian Conf. on Computer Vision, pages 601–605, 2000.
G. Adorni, L. Bolognini, S. Cagnoni, and M. Mordonini. Stereo obstacle detection method for a hybrid omni-directional/pin-hole vision system. In Robocup Symposium 2001, 2001. In press.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adorni, G., Bolognini, L., Cagnoni, S., Mordonini, M. (2001). A Non-traditional Omnidirectional Vision System with Stereo Capabilities for Autonomous Robots. In: Esposito, F. (eds) AI*IA 2001: Advances in Artificial Intelligence. AI*IA 2001. Lecture Notes in Computer Science(), vol 2175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45411-X_36
Download citation
DOI: https://doi.org/10.1007/3-540-45411-X_36
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42601-1
Online ISBN: 978-3-540-45411-3
eBook Packages: Springer Book Archive