Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Non-traditional Omnidirectional Vision System with Stereo Capabilities for Autonomous Robots

  • Conference paper
  • First Online:
AI*IA 2001: Advances in Artificial Intelligence (AI*IA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2175))

Included in the following conference series:

Abstract

In this paper we describe a vision system based on the use of both an omnidirectional vision sensor and a standard CCD camera. This hybrid system is aimed at compensating for drawbacks of both sensors and at offering new opportunities deriving by their joint use. It can be used in several tasks, such as implementation of peripheral/foveal vision strategies, stereo vision, etc. The paper describes the device on which the vision system is based and its use as a stereo system for obstacle detection in a semi-structured environment, based on a perspective removal algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Bloch. Information combination operators for data fusion: a comparative review with classification. In Proc. of the SPIE, volume 2315, pages 148–159, 1994.

    Article  Google Scholar 

  2. O. Trullier, S. I. Wiener, A. Berthoz, and J. A. Meyer. Biologically based artificial navigation systems: review and prospects. Progress in Neurobiology, 51(5):483–544, 1997.

    Article  Google Scholar 

  3. J. Zhang, A. Knoll, and V. Schwert. Situated neuro-fuzzy control for vision-based robot localisation. Robotics and Autonomous Systems, 28:71–82, 1999.

    Article  MATH  Google Scholar 

  4. S. K. Nayar. Omnidirectional vision. In Robotics Research. 8th International Symposium, pages 195–202, 1998.

    Google Scholar 

  5. T. Svoboda and T. Pajdla. Panoramic cameras for 3D computation. In Proc. Czech Pattern Recognition Workshop, pages 63–70, 2000.

    Google Scholar 

  6. R. A. Hicks and R. Bajcsy. Reflective surfaces as computational sensors. In Proc. 2nd Workshop on Perception for Mobile Agents, pages 82–86, 1999.

    Google Scholar 

  7. F. Marchese and D. Sorrenti. Omni-directional vision with a multi-part mirror. In 4th Int. Workshop on RoboCup, pages 289–298, 2000.

    Google Scholar 

  8. C. Marques and P. Lima. A localization method for a soccer robot using a vision-based omni-directional sensor. In Proc. of EuroRoboCup Workshop, Amsterdam, The Netherlands, June 2000. available in electronic form only.

    Google Scholar 

  9. L. Delahoche, B. Maric, C. Pégard, and P. Vasseur. A navigation system based on an omnidirectional sensor. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 718–724, 1997.

    Google Scholar 

  10. J. S. Gutmann, T. Weigel, and B. Nebel. Fast, accurate, and robust selflocalization in polygonal environments. In Proc. 1999 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 1412–1419, 1999.

    Google Scholar 

  11. M. Plagge, R. Günther, J. Ihlenburg, D. Jung, and A. Zell. The Attempto RoboCup robot team: Team-Tuebingen. In RoboCup-99 Team Descriptions, pages 200–209, 1999. available electronically at http://www.ep.liu.se/ea/cis/1999/006/cover.html.

  12. A. Clérentin, L. Delahoche, C. Pégard, and E. Brassart-Gracsy. A localization method based on two omnidirectional perception systems cooperation. In Proc. 2000 ICRA. Millennium Conference, volume 2, pages 1219–1224, 2000.

    Article  Google Scholar 

  13. A. Bonarini, P. Aliverti, and M. Lucioni. An omnidirectional vision sensor for fast tracking for mobile robots. IEEE Trans. on Instrumentation and Measurement, 49(3):509–512, 2000.

    Article  Google Scholar 

  14. H. A. Mallot, H. H. Bülthoff, J. J. Little, and S. Bohrer. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics, 64:177–185, 1991.

    Article  MATH  Google Scholar 

  15. S. Bohrer, T. Zielke, and V. Freiburg. An integrated obstacle detection framework for intelligent cruise control. In Proc. Intelligent Vehicles’ 95 Symp., pages 276–281, 1995.

    Google Scholar 

  16. K. Onoguchi, N. Takeda, and M. Watanabe. Planar projection stereopsis method for road extraction. IEICE Trans. Inf. & Syst., E81-D(9):1006–1018, 1998.

    Google Scholar 

  17. M. Bertozzi, A. Broggi, and A. Fascioli. Stereo inverse perspective mapping: Theory and applications. Image and Vision Computing Journal, 16(8):585–590, 1998.

    Article  Google Scholar 

  18. C. Drocourt, L. Delahoche, C. Pégard, and C. Cauchois. Localization method based on omnidirectional stereoscopic vision and dead-reckoning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 960–965, 1999.

    Google Scholar 

  19. G. Adorni, S. Cagnoni, and M. Mordonini. Cellular automata based inverse perspective transform as a tool for indoor robot navigation. In E. Lamma and P. Mello, editors, AI*IA99:Advances in Artificial Intelligence, number 1792 in LNCS, pages 345–355. Springer, 2000.

    Chapter  Google Scholar 

  20. G. Adorni, S. Cagnoni, and M. Mordonini. An efficient perspective effect removal technique for scene interpretation. In Proc. Asian Conf. on Computer Vision, pages 601–605, 2000.

    Google Scholar 

  21. G. Adorni, L. Bolognini, S. Cagnoni, and M. Mordonini. Stereo obstacle detection method for a hybrid omni-directional/pin-hole vision system. In Robocup Symposium 2001, 2001. In press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adorni, G., Bolognini, L., Cagnoni, S., Mordonini, M. (2001). A Non-traditional Omnidirectional Vision System with Stereo Capabilities for Autonomous Robots. In: Esposito, F. (eds) AI*IA 2001: Advances in Artificial Intelligence. AI*IA 2001. Lecture Notes in Computer Science(), vol 2175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45411-X_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-45411-X_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42601-1

  • Online ISBN: 978-3-540-45411-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics