Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Confluence of Untyped Lambda Calculus via Simple Types

  • Conference paper
  • First Online:
Theoretical Computer Science (ICTCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2202))

Included in the following conference series:

  • 433 Accesses

Abstract

We present a new proof of confluence of the untyped lambda calculus by reducing the confluence of β-reduction in the untyped lambda calculus to the confluence of β-reduction in the simply typed lambda calculus. This is achieved by embedding typed lambda terms into simply typed lambda terms. Using this embedding, an auxiliary reduction, and β-reduction on simply typed lambda terms we define a new reduction on all lambda terms. The transitive closure of the reduction defined is β-reduction on all lambda terms. This embedding allows us to use the confluence of β-reduction on simply typed lambda terms and thus prove the confluence of the reduction defined. As a consequence we obtain the confluence of β-reduction in the untyped lambda calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barendregt, H. P.: The Lambda Calculus-Its Syntax and Semantics. North-Holland, Amsterdam (1984).

    MATH  Google Scholar 

  2. Barendregt, H. P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D. M. and T. S. E. Maibaum (eds.): Handbook of Logic in Computer Science, Vol. 2. Oxford University Press, Oxford (1992) 117–309.

    Google Scholar 

  3. Dershowitz, N. and J. P. Jounnaud: Rewrite Systems. In: Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, Elsevier Science Publishers B. V. (1990).

    Google Scholar 

  4. Ghilezan, S.: Application of typed lambda calculi in the untyped lambda calculus. In: Nerode, A. and Yu. Matiyasevich (eds.): Logical Foundations of Computer Science’ 94. Lecture Notes in Computer Science 813, Springer-Verlag, Berlin (1994) 129–139.

    Google Scholar 

  5. Ghilezan, S.: Generalized finiteness of developments in typed lambda calculi. Journal of Automata, Languages and Combinatorics 4 (1996) 247–257.

    MathSciNet  Google Scholar 

  6. Klop, J. W., V. van Oostrom, and R. de Vrijer: A geometric proof of confluence by decreasing diagrams. Journal of Logic and Computation 10(3) (2000) 437–460.

    Article  MATH  MathSciNet  Google Scholar 

  7. Koletsos, G.: Church-Rosser theorem for typed functionals. Journal of Symbolic Logic 50 (1985) 782–790.

    Article  MATH  MathSciNet  Google Scholar 

  8. Koletsos, G. and G. Stavrinos: Church-Rosser theorem for conjunctive type systems. In: Kakas, A. K. and A. Sinachopoulos (eds.): Proceedings of the First Panhellenic Logic Symposium. Nicosia (1997) 25–37.

    Google Scholar 

  9. Krivine, J. L.: Lambda-calcul types et modèles. Masson, Paris (1990)

    MATH  Google Scholar 

  10. Meyer, A. M.: What is a model of lambda calculus? Information and control 122 (1982) 52–87.

    Google Scholar 

  11. Mitchell, J.: Type Systems for Programming Languages. In: Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, Elsevier Science Publishers B. V. (1990) 365–458.

    Google Scholar 

  12. Newman, M. H. A.: On theories with a combinatorial definition of ‘equivalence’. Annals of Mathematics 43 (1942) 223–243.

    Article  MathSciNet  Google Scholar 

  13. Pfenning, F.: A Proof of the Church-Rosser theorem and its representation in a Logical Framework, CMU-CS-92-186, (September 1992), forthocoming in Journal of Authomated Reasoning.

    Google Scholar 

  14. Scott, D.: Relating theories of the lambda calculus. In: Seldin, J. P. and J. R. Hindley: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London (1980) 403–450.

    Google Scholar 

  15. Statman, R.: Logical relations and the simply typed lambda calculus. Information and Control 65 (1985) 85–97.

    Article  MATH  MathSciNet  Google Scholar 

  16. Takahashi, M.: Parallel Reductions in λ-Calculus. Journal of Symbolic Computation 7 (1989) 113–123.

    Article  MATH  MathSciNet  Google Scholar 

  17. van Oostrom, V.: Confluence by decreasing diagrams. Theoretical Computer Science 126 (1994) 259–280.

    Article  MATH  MathSciNet  Google Scholar 

  18. van Oostrom, V. and F. van Raamsdonk: Weak orthogonality implies confluence: the higher order case. In: Nerode, A. and Yu. Matiyasevich (eds.): Logical Foundations of Computer Science’ 94. Lecture Notes in Computer Science 813, Springer-Verlag, Berlin (1994) 379–392.

    Google Scholar 

  19. Wadsworth, C. P.: The relation between computational and denotational properties for Scott’s D∞-models of the lambda calculus. SIAM Journal of Computing 5(3) (1976) 488–521.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghilezan, S., Kunčak, V. (2001). Confluence of Untyped Lambda Calculus via Simple Types. In: Theoretical Computer Science. ICTCS 2001. Lecture Notes in Computer Science, vol 2202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45446-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45446-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42672-1

  • Online ISBN: 978-3-540-45446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics