Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

  • 2344 Accesses

Abstract

We present a faster all-pairs shortest paths algorithm for arbitrary real-weighted directed graphs. The algorithm works in the fundamental comparison- addition model and runs in O(mn+n 2 log log n) time, where m and n are the number of edges & vertices, respectively. This is strictly faster than Johnson’s algorithm (for arbitrary edge-weights) and Dijkstra’s algorithm (for positive edge-weights) when m = o(n log n) and matches the running time of Hagerup’s APSP algorithm, which assumes integer edge-weights and a more powerful model of computation.

This work was supported by Texas Advanced Research Program Grant 003658-0029-1999, NSF Grant CCR-9988160, and an MCD Graduate Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Cormen, C. Leiserson, R. Rivest. Intro. to Algorithms. MIT Press, 1990.

    Google Scholar 

  2. E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1 (1959), 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. In JACM 34 (1987), 596–615.

    Article  MathSciNet  Google Scholar 

  4. H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In Proc. FOCS 1985, 90–99.

    Google Scholar 

  5. T. Hagerup. Improved shortest paths on the word RAM. In Proc. ICALP 2000, LNCS volume 1853, 61–72.

    Google Scholar 

  6. D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput. Mach. 24 (1977), 1–13.

    MATH  MathSciNet  Google Scholar 

  7. S. Pettie. A faster all-pairs shortest path algorithm for real-weighted sparse graphs. UTCS Technical Report CS-TR-02-13, February, 2002.

    Google Scholar 

  8. S. Pettie. On the comparison-addition complexity of all-pairs shortest paths. UTCS Technical Report CS-TR-02-21, April, 2002.

    Google Scholar 

  9. S. Pettie, V. Ramachandran, S. Sridhar. Experimental evaluation of a new shortest path algorithm. Proceedings of ALENEX 2002.

    Google Scholar 

  10. S. Pettie, V. Ramachandran. Computing shortest paths with comparisons and additions. Proceedings of SODA 2002, 267–276.

    Google Scholar 

  11. R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. J. Comput. Syst. Sci. 18 (1979), no. 2, 110–127.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Thorup. Undirected single source shortest paths with positive integer weights in linear time. J. Assoc. Comput. Mach. 46 (1999), no. 3, 362–394.

    MATH  MathSciNet  Google Scholar 

  13. P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an efficient priority queue. Math. Syst. Theory 10 (1977), 99–127.

    Article  MATH  Google Scholar 

  14. U. Zwick. Exact and approximate distances in graphs-A survey. Updated version at http://www.cs.tau.ac.il/zwick/, Proc. of 9th ESA (2001), 33–48.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pettie, S. (2002). A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics