Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Parallel Block Preconditioner Accelerated by Coarse Grid Correction

  • Conference paper
  • First Online:
High Performance Computing and Networking (HPCN-Europe 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1823))

Included in the following conference series:

  • 397 Accesses

Abstract

A block-preconditioner is considered in a parallel computing environment. This preconditioner has good parallel properties, however the convergence deteriorates when the number of blocks increases. Two different techniques are studied to accelerate the convergence: overlapping at the interfaces and using a coarse grid correction. It appears that the latter technique is indeed scalable, so the wall clock time is constant when the number of blocks increases. Furthermore the method is easily added to an existing solution code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning methods. Num. Math., 48:479–498, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Brakkee, A. Segal, and C.G.M. Kassels. A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations. Simulation Practice and Theory, 3:185–205, 1995.

    Article  Google Scholar 

  3. E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incompressible Navier-Stokes equations: solving subdomain problems accurately and inaccurately. Int. J. for Num. Meth. Fluids, 26:1217–1237, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. X.-C. Cai, C. Farhat, and M. Sarkis. A minimum overlap restricted additive Schwarz preconditioner and applications in 3D flow simulations. In J. Mandel, C. Farhat, and X.-C. Cai, editors, The Tenth International Conference on Domain Decomposition Methods for Partial Differential Equations, pages 479–485, Providence, 1998. AMS.

    Google Scholar 

  5. X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput., 21:792–797, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. de Sturler and H.A. van der Vorst. Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers. Appl. Num. Math., 18:441–459, 1995.

    Article  MATH  Google Scholar 

  7. Eric de Sturler. Incomplete block LU preconditioners on slightly overlapping subdomains for a massively parallel computer. Applied Numerical Mathematics, 19:129–146, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Num. Anal., 20:345–357, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Frank and C. Vuik. Parallel implementation of a multiblock method with approximate subdomain solution. Appl. Num. Math., 30:403–423, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Frank and C. Vuik. On the construction of deflation-based preconditioners. MAS-R 0009, CWI, Amsterdam, 2000.

    Google Scholar 

  11. W. Gropp, E. Lusk, and A. Skjellum. Using MPI, portable programming with the Message-Passing Interface. Scientific and Engineering Computation Series. The MIT Press, Cambridge, 1994.

    Google Scholar 

  12. C. B. Jenssen and P. Å. Weinerfelt. Coarse grid correction scheme for implicit multiblock Euler calculations. AIAA Journal, 33(10):1816–1821, 1995.

    Article  MATH  Google Scholar 

  13. L. Mansfield. On the conjugate gradient solution of the Schur complement system obtained from domain decomposition. SIAM J. Numer. Anal., 27(6):1612–1620, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Mansfield. Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration on parallel computers. SIAM J. Sci. Stat. Comput., 12(6):1314–1323, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Radicati and Y. Robert. Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing, 11:223–239, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.K. Seager. Parallelizing conjugate gradient for the Cray X-MP. Paral. Comp., 3:35–47, 1986.

    Article  MATH  Google Scholar 

  18. K.H.s Tan. Local coupling in domain decomposition. PhD thesis, University Utrecht, Utrecht, 1995.

    Google Scholar 

  19. W.P. Tang. Generalized Schwarz splittings. SIAM Journal on Scientific and Statistical Computing, 13:573–595, 1992.

    Article  MATH  Google Scholar 

  20. H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Num. Lin. Alg. Appl., 1:369–386, 1994.

    Article  MATH  Google Scholar 

  21. C. Vuik. Fast iterative solvers for the discretized incompressible Navier-Stokes equations. Int. J. for Num. Meth. Fluids, 22:195–210, 1996.

    Article  MATH  Google Scholar 

  22. C. Vuik and J. Frank. A parallel implementation of the block preconditioned GCR method. In P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger, editors, High-Performance Computing and Networking, Proceeding of the 7th International Conference, HPCN Europe 1999, Amsterdam, The Netherlands, April 12–14, 1999, Lecture Notes in Computer Science 1593, pages 1052–1060, Berlin, 1999. Springer.

    Google Scholar 

  23. C. Vuik, A. Segal, and J.A. Meijerink. An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comp. Phys., 152:385–403, 1999.

    Article  MATH  Google Scholar 

  24. C. Vuik, R.R.P. van Nooyen, and P. Wesseling. Parallelism in ILU-preconditioned GMRES. Paral. Comp., 24:1927–1946, 1998.

    Article  Google Scholar 

  25. P. Wesseling, A. Segal, and C.G.M. Kassels. Computing flows on general three-dimensional nonsmooth staggered grids. J. Comp. Phys., 149:333–362, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vuik, C., Frank, J. (2000). A Parallel Block Preconditioner Accelerated by Coarse Grid Correction. In: Bubak, M., Afsarmanesh, H., Hertzberger, B., Williams, R. (eds) High Performance Computing and Networking. HPCN-Europe 2000. Lecture Notes in Computer Science, vol 1823. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45492-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45492-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67553-2

  • Online ISBN: 978-3-540-45492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics