Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Valued Tolerance and Decision Rules

  • Conference paper
  • First Online:
Rough Sets and Current Trends in Computing (RSCTC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2005))

Included in the following conference series:

Abstract

The concept of valued tolerance is introduced as an extension of the usual concept of indiscernibility (which is a crisp equivalence relation) in rough sets theory. Some specific properties of the approach are discussed. Further on the problem of inducing rules is addressed. Properties of a “credibility degree” associated to each rule are analysed and its use in classification problems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubois D., Prade H.: Rough Fuzzy Sets and Fuzzy Rough Sets. International Journal of General Systems, 17, (1990), 191–209.

    Article  MATH  Google Scholar 

  2. Greco S., Matarazzo B. Slowinski R.: Fuzzy similarity relation as a basis for rough approximations. In Polkowski L., Skowron A. (eds.), Proc. of the RSCTC-98, Springer Verlag, Berlin, LNAI 1424, (1998), 283–289.

    Google Scholar 

  3. Greco S., Matarazzo B. Slowinski R.: Rough set processing of vague information using fuzzy similarity relations. In Calude C.S., Paun G. (eds), Finite vs infinite: contributions to an eternal dilemma, Springer Verlag, Berlin, (2000), 149–173.

    Google Scholar 

  4. Grzymala-Busse J.W.: On the unknown attribute values in learning from examples. Proc. of Int. Symp. on Methodologies for Intelligent Systems, (1991), 368–377.

    Google Scholar 

  5. Kitainik L.: Fuzzy Decision Procedures with Binary Relations, Kluwer Academic, Dordrecht, (1993).

    MATH  Google Scholar 

  6. Kryszkiewicz M.: Properties of incomplete information systems in the framework of rough sets. In Polkowski L., Skowron A. (eds.), Rough Sets in Data Mining and Knowledge Discovery, Physica-Verlag, Heidelberg, (1998), 422–450.

    Google Scholar 

  7. Luce R.D.: Semiorders and a theory of utility discrimination, Econometrica, 24, (1956), 178–191.

    Article  MATH  MathSciNet  Google Scholar 

  8. Skowron A., Stepaniuk J.: Tolerance approximation spaces, Fundamenta Informaticae, 27, (1996), 245–253.

    MATH  MathSciNet  Google Scholar 

  9. Slowiński R., Vanderpooten D.: Similarity relation as a basis for rough approximations, In Wang P. (ed.), Advances in Machine Intelligence and Soft Computing, vol. IV., Duke University Press, (1997), 17–33.

    Google Scholar 

  10. Stefanowski J., Tsoukiàs A.: On the extension of rough sets under incomplete information, in N. Zhong, A. Skowron, S. Ohsuga, (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing, Springer Verlag, LNAI 1711, Berlin, (1999), 73–81.

    Google Scholar 

  11. Tsoukiàs A., Vincke Ph.: A characterization of PQI interval orders, to appear in Discrete Applied Mathematics, (2000).

    Google Scholar 

  12. Yao Y.: Combination of rough sets andfuzzy sets based on á-level sets. In Lin T.Y., Cercone N. (eds.), Rough sets and data mining, Kluwer Academic, Dordrecht, (1996), 301–321.

    Google Scholar 

  13. Yao Y., Wang T.: On rough relations: an alternative fromulation. In N. Zhong, A. Skowron, S. Ohsuga, (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing, Springer Verlag, LNAI 1711, Berlin, (1999), 82–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stefanowski, J., Tsoukiàs, A. (2001). Valued Tolerance and Decision Rules. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45554-X_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43074-2

  • Online ISBN: 978-3-540-45554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics