Abstract
The concept of valued tolerance is introduced as an extension of the usual concept of indiscernibility (which is a crisp equivalence relation) in rough sets theory. Some specific properties of the approach are discussed. Further on the problem of inducing rules is addressed. Properties of a “credibility degree” associated to each rule are analysed and its use in classification problems is discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Dubois D., Prade H.: Rough Fuzzy Sets and Fuzzy Rough Sets. International Journal of General Systems, 17, (1990), 191–209.
Greco S., Matarazzo B. Slowinski R.: Fuzzy similarity relation as a basis for rough approximations. In Polkowski L., Skowron A. (eds.), Proc. of the RSCTC-98, Springer Verlag, Berlin, LNAI 1424, (1998), 283–289.
Greco S., Matarazzo B. Slowinski R.: Rough set processing of vague information using fuzzy similarity relations. In Calude C.S., Paun G. (eds), Finite vs infinite: contributions to an eternal dilemma, Springer Verlag, Berlin, (2000), 149–173.
Grzymala-Busse J.W.: On the unknown attribute values in learning from examples. Proc. of Int. Symp. on Methodologies for Intelligent Systems, (1991), 368–377.
Kitainik L.: Fuzzy Decision Procedures with Binary Relations, Kluwer Academic, Dordrecht, (1993).
Kryszkiewicz M.: Properties of incomplete information systems in the framework of rough sets. In Polkowski L., Skowron A. (eds.), Rough Sets in Data Mining and Knowledge Discovery, Physica-Verlag, Heidelberg, (1998), 422–450.
Luce R.D.: Semiorders and a theory of utility discrimination, Econometrica, 24, (1956), 178–191.
Skowron A., Stepaniuk J.: Tolerance approximation spaces, Fundamenta Informaticae, 27, (1996), 245–253.
Slowiński R., Vanderpooten D.: Similarity relation as a basis for rough approximations, In Wang P. (ed.), Advances in Machine Intelligence and Soft Computing, vol. IV., Duke University Press, (1997), 17–33.
Stefanowski J., Tsoukiàs A.: On the extension of rough sets under incomplete information, in N. Zhong, A. Skowron, S. Ohsuga, (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing, Springer Verlag, LNAI 1711, Berlin, (1999), 73–81.
Tsoukiàs A., Vincke Ph.: A characterization of PQI interval orders, to appear in Discrete Applied Mathematics, (2000).
Yao Y.: Combination of rough sets andfuzzy sets based on á-level sets. In Lin T.Y., Cercone N. (eds.), Rough sets and data mining, Kluwer Academic, Dordrecht, (1996), 301–321.
Yao Y., Wang T.: On rough relations: an alternative fromulation. In N. Zhong, A. Skowron, S. Ohsuga, (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing, Springer Verlag, LNAI 1711, Berlin, (1999), 82–90.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stefanowski, J., Tsoukiàs, A. (2001). Valued Tolerance and Decision Rules. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_25
Download citation
DOI: https://doi.org/10.1007/3-540-45554-X_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43074-2
Online ISBN: 978-3-540-45554-7
eBook Packages: Springer Book Archive