Abstract
This paper presents a tree visualizer that combines several techniques from the field of information visualization to handle efficiently large decision trees in an interactive mining system.
Preview
Unable to display preview. Download preview PDF.
References
Ankerst, M., Elsen, C, Ester, M., Kriegel, H. P.: Visual Classification: An Interactive Approach to Decision Tree Construction. Proc. of Fifth, Inter. Conf. on Knowledge Discovery and Data Mining (1999), 392–397.
Brunk, C, Kelly, J. and Kohavi, R.: MineSet: An Integrated System for Data Mining. Proc. of Third Inter. Conf. on Knowledge Discovery and Data Mining (1997) 135–138.
Card, S., Mackinlay, J., Shneiderman B.: Readings in Information Visualization: Using Vision To Think, Morgan Kaufmann Publishers, Inc. (1999).
Nguyen, D. T., Ho, T. B.: An Interactive-Graphic System for Decision Tree Induction. Journal of Japanese Society for Artificial Intelligence, Vol. 14 (1999) 131–138.
Rao, J. S., Potts, W. J. E.: Visualizing Bagged Decision Trees. Proc. of Third Inter. Conf. on Knowledge Discovery and Data Mining, AAAI Press (1997) 243–246.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, T.D., Ho, T.B., Shimodaira, H. (2000). Interactive Visualization in Mining Large Decision Trees. In: Terano, T., Liu, H., Chen, A.L.P. (eds) Knowledge Discovery and Data Mining. Current Issues and New Applications. PAKDD 2000. Lecture Notes in Computer Science(), vol 1805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45571-X_40
Download citation
DOI: https://doi.org/10.1007/3-540-45571-X_40
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67382-8
Online ISBN: 978-3-540-45571-4
eBook Packages: Springer Book Archive