Abstract
We show how to use symbolic model-checking techniques in heuristic search algorithms for both deterministic and decision-theoretic planning problems. A symbolic approach exploits state abstraction by using decision diagrams to compactly represent sets of states and operators on sets of states. In earlier work, symbolic model-checking techniques have been used to find plans that minimize the number of steps needed to reach a goal. Our approach generalizes this by showing how to find plans that minimize the expected cost of reaching a goal. For this generalization, we use algebraic decision diagrams instead of binary decision diagrams. In particular, we show that algebraic decision diagrams provide a compact representation of state evaluation functions. We describe symbolic generalizations of A* search for deterministic planning and of LAO* search for decision-theoretic planning problems formalized as Markov decision processes. We report experimental results and discuss issues for future work.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cimatti, A., Roveri, M., Traverso, P.: Automatic OBDD-based generation of universal plans in non-deterministic domains. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence. (1998) 875–881
Cimatti, M., Roveri, M.: Conformant planning via symbolic model checking. Journal of Artificial Intelligence Research 13 (2000) 305–338
Edelkamp, S., Reffel, F.: OBDDs in heuristic search. In: German Conference on Artificial Intelligence (KI). (1998) 81–92
Edelkamp, S., Reffel, F.: Deterministic state space planning with BDDs. In: Proceedings of the 5th European Conference on Planning (ECP-99). (1999) 381–2
Jensen, R., Veloso, M.: OBDD-based universal planning for synchronized agents in non-deterministic domains. Journal of Artificial Intelligence Research 13 (2000) 189–226
Jensen, R.: OBDD-based deterministic planning using the UMOP planning frame-work. In: Proceedings of the AIPS-00 Workshop on Model-Theoretic Approaches to Planning. (2000) 26–31
Hoey, J., St-Aubin, R., Hu, A., outilier, C.: SPUDD: Stochastic planning using decision diagrams. In: Proceedings of the Fifteenth Conference on Uncertainty in Articial Intelligence. (1999) 279–288
St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: Approximate policy construction using decision diagrams. In: Proceedings of NIPS-2000. (2000)
Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA (1995)
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Science and Cybernetics (SSC-4) 100–107
Hansen, E., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence 129 (2001) 35–62
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35 (1986) 677–691
K.L. McMillan: Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts (1993)
R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, F. Somenzi: Algebraic Decision Diagrams and Their Applications. In: IEEE/ACM International Conference on CAD, IEEE Computer Society Press (1993) 188–191
Somenzi, F.: Binary decision diagrams. In Broy, M., Steinbruggen, R., eds.: Calculational System Design. Volume 173 of NATO Science Series F: Computer and Systems Sciences. IOS Press (1999) 303–366
Edelkamp, S.: Directed symbolic exploration in AI-planning. In: AAAI Spring Symposium on Model-based Validation of Intelligence, Stanford University (2001) 84–92
Somenzi, F.: CUDD: CU decision diagram package. ftp://vlsi.colorado.edu/pub/ (1998)
Daniele, M., Traverso, P., Vardi, M.: Strong cyclic planning revisited. In: Proceedings of the 5th European Conference on Planning (ECP-99). (1999)
Nilsson, N.: Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto, CA (1980)
Feng, Z., Hansen, E.: Symbolic heuristic search for factored Markov decision processes. (2002) Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hansen, E., Zhou, R., Feng, Z. (2002). Symbolic Heuristic Search Using Decision Diagrams. In: Koenig, S., Holte, R.C. (eds) Abstraction, Reformulation, and Approximation. SARA 2002. Lecture Notes in Computer Science(), vol 2371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45622-8_7
Download citation
DOI: https://doi.org/10.1007/3-540-45622-8_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43941-7
Online ISBN: 978-3-540-45622-3
eBook Packages: Springer Book Archive