Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Symbolic Heuristic Search Using Decision Diagrams

  • Conference paper
  • First Online:
Abstraction, Reformulation, and Approximation (SARA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2371))

  • 892 Accesses

Abstract

We show how to use symbolic model-checking techniques in heuristic search algorithms for both deterministic and decision-theoretic planning problems. A symbolic approach exploits state abstraction by using decision diagrams to compactly represent sets of states and operators on sets of states. In earlier work, symbolic model-checking techniques have been used to find plans that minimize the number of steps needed to reach a goal. Our approach generalizes this by showing how to find plans that minimize the expected cost of reaching a goal. For this generalization, we use algebraic decision diagrams instead of binary decision diagrams. In particular, we show that algebraic decision diagrams provide a compact representation of state evaluation functions. We describe symbolic generalizations of A* search for deterministic planning and of LAO* search for decision-theoretic planning problems formalized as Markov decision processes. We report experimental results and discuss issues for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cimatti, A., Roveri, M., Traverso, P.: Automatic OBDD-based generation of universal plans in non-deterministic domains. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence. (1998) 875–881

    Google Scholar 

  2. Cimatti, M., Roveri, M.: Conformant planning via symbolic model checking. Journal of Artificial Intelligence Research 13 (2000) 305–338

    MATH  Google Scholar 

  3. Edelkamp, S., Reffel, F.: OBDDs in heuristic search. In: German Conference on Artificial Intelligence (KI). (1998) 81–92

    Google Scholar 

  4. Edelkamp, S., Reffel, F.: Deterministic state space planning with BDDs. In: Proceedings of the 5th European Conference on Planning (ECP-99). (1999) 381–2

    Google Scholar 

  5. Jensen, R., Veloso, M.: OBDD-based universal planning for synchronized agents in non-deterministic domains. Journal of Artificial Intelligence Research 13 (2000) 189–226

    MATH  MathSciNet  Google Scholar 

  6. Jensen, R.: OBDD-based deterministic planning using the UMOP planning frame-work. In: Proceedings of the AIPS-00 Workshop on Model-Theoretic Approaches to Planning. (2000) 26–31

    Google Scholar 

  7. Hoey, J., St-Aubin, R., Hu, A., outilier, C.: SPUDD: Stochastic planning using decision diagrams. In: Proceedings of the Fifteenth Conference on Uncertainty in Articial Intelligence. (1999) 279–288

    Google Scholar 

  8. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: Approximate policy construction using decision diagrams. In: Proceedings of NIPS-2000. (2000)

    Google Scholar 

  9. Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA (1995)

    MATH  Google Scholar 

  10. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Science and Cybernetics (SSC-4) 100–107

    Google Scholar 

  11. Hansen, E., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence 129 (2001) 35–62

    Article  MATH  MathSciNet  Google Scholar 

  12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35 (1986) 677–691

    Article  Google Scholar 

  13. K.L. McMillan: Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts (1993)

    MATH  Google Scholar 

  14. R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, F. Somenzi: Algebraic Decision Diagrams and Their Applications. In: IEEE/ACM International Conference on CAD, IEEE Computer Society Press (1993) 188–191

    Google Scholar 

  15. Somenzi, F.: Binary decision diagrams. In Broy, M., Steinbruggen, R., eds.: Calculational System Design. Volume 173 of NATO Science Series F: Computer and Systems Sciences. IOS Press (1999) 303–366

    Google Scholar 

  16. Edelkamp, S.: Directed symbolic exploration in AI-planning. In: AAAI Spring Symposium on Model-based Validation of Intelligence, Stanford University (2001) 84–92

    Google Scholar 

  17. Somenzi, F.: CUDD: CU decision diagram package. ftp://vlsi.colorado.edu/pub/ (1998)

  18. Daniele, M., Traverso, P., Vardi, M.: Strong cyclic planning revisited. In: Proceedings of the 5th European Conference on Planning (ECP-99). (1999)

    Google Scholar 

  19. Nilsson, N.: Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto, CA (1980)

    MATH  Google Scholar 

  20. Feng, Z., Hansen, E.: Symbolic heuristic search for factored Markov decision processes. (2002) Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, E., Zhou, R., Feng, Z. (2002). Symbolic Heuristic Search Using Decision Diagrams. In: Koenig, S., Holte, R.C. (eds) Abstraction, Reformulation, and Approximation. SARA 2002. Lecture Notes in Computer Science(), vol 2371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45622-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45622-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43941-7

  • Online ISBN: 978-3-540-45622-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics