Abstract
The aim of this paper is to summarize and analyze some results obtained in 2000–2001 about decidable and undecidable fragments of various first-order temporal logics, give some applications in the field of knowledge representation and reasoning, and attract the attention of the ‘temporal community’ to a number of interesting open problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Abadi. The power of temporal proofs. In Proc. Symp. on Logic in Computer Science, pages 176–186, Ithaca, 1979.
S. Abiteboul, L. Herr, and J. van den Bussche. Temporal connectives versus explicit timestamps in temporal query languages. In J. Clifford and A. Tuzhilin, editors, Recent Advances in Temporal Databases, pages 43–57. Springer, 1995.
S. Abiteboul, L. Herr, and J. van den Bussche. Temporal versus first-order logic in query temporal databases. In ACM Symposium on Principles of Database Systems, pages 49–57, Montreal, Canada, 1996.
H. Andréka, I. Németi, and I. Sain. Completeness problems in verification of programs and program schemes. In Mathematical Foundations of Computer Science 1979, Lecture Notes in Computer Science. Springer-Verlag, 1979.
H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic, 27:217–274, 1998.
A. Artale and E. Franconi. A computational account for a description logic of time and action. In Proceedings of the fourth Conference on Principles of Knowledge Representation and Reasoning, pages 3–14, Montreal, Canada, 1994. Morgan Kaufmann.
A. Artale and E. Franconi. Temporal description logics. In Handbook of Time and Temporal Reasoning in Arti.cial Intelligence. MIT Press, 2001. To appear.
A. Artale, E. Franconi, M. Mosurovic, F. Wolter, and M. Zakharyaschev. The DLRUS temporal description logic. In D. McGuinness, P. Patel-Schneider, C. Goble and R. Möller, editors, Proceedings of the 2001Description Logic Workshop (DL-2001), Stanford, pages 96–105, 2001.
F. Baader and A. Laux. Terminological logics with modal operators. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages 808–814, Montreal, Canada, 1995. Morgan Kaufmann.
F. Baader and H.J. Ohlbach. A multi-dimensional terminological knowledge representation language. Journal of Applied Non-Classical Logic, 5:153–197, 1995.
B. Bennett, A. Cohn, and A. Isli. A logical approach to incorporating qualitative spatial reasoning into GIS. In Proceedings the International Conference on Spatial Information Theory (COSIT), pages 503–504, 1997.
J. van Benthem. Dynamic bits and pieces. Technical Report LP-97-01, ILLC, University of Amsterdam, 1997.
E. Börger, E. Grädel, and Yu. Gurevich. The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, 1997.
R. Brachman and J. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9:171–216, 1985.
J. Büchi. On a decision method in restricted second order arithmetic. In Logic, Methodology, and Philosophy of Science: Proc. 1960 Intern. Congress, pages 1–11. Stanford University Press, 1962.
J. Burgess. Logic and time. Journal of Symbolic Logic, 44:566–582, 1979.
J. Burgess and Yu. Gurevich. The decision problem for linear temporal logic. Notre Dame J. Formal Logic, 26(2):115–128, 1985.
D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expressive description logics. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages 1581–1634. Elsevier Science Publishers B.V., 2001.
D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms. Journal of Arti.cial Intelligence Research, 11: 199–240, 1999
J. Chomicki. Temporal query languages: a survey. In D. Gabbay and H.J. Ohlbach, editors, Temporal Logic, First International Conference, pages 506–534, Montreal, Canada, 1994. Springer-Verlag.
J. Chomicki and D. Niwinski. On the feasibility of checking temporal integrity constraints. Journal of Computer and Systems Sciences, 51:523–535, 1995.
A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodic first-order temporal logic. Studia Logica, 2001. (To appear.)
A. Degtyarev and M. Fisher. Towards First-Order Temporal Resolution. In F. Baader, G. Brewka and T. Eiter, editors, KI 2001: Advances in Artificial Intelligence, volume 2174 of LNCS, pages 18–32. Springer, 2001.
M. Egenhofer and R. Franzosa. Point-set topological spatial relations. International Journal of Geographical Information Systems, 5:161–174, 1991.
M. Egenhofer and D. Mark. Naive geography. In A. Frank and W. Kuhn, editors, Spatial Information Theory: a theoretical basis for GIS, volume 988 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, Berlin, 1995.
E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 996–1076, 1990.
R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press, 1995.
D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1. Oxford University Press, 1994.
D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Logics: Theory and Applications. Elsevier, 2002.
D. Gabbay, M. Reynolds, and M. Finger. Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 2. Oxford University Press, 2000.
J. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 2, pages 249–307. Kluwer Academic Publishers, 1984.
C. Günsel and M. Wittmann. Towards an implementation of the temporal description logic T LALC. In D. McGuinness, P. Patel-Schneider, C. Goble and R. Möller, editors, Proceedings of the 2001Description Logic Workshop (DL-2001), Stanford, pages 162–169, 2001.
E. Grädel. Decision procedures for guarded logics. In Automated Deduction— CADE-16, Proceedings of the 16th International Conference on Automated Deduction, volume 1632 of LNCS, pages 31–51. Springer, 1999.
R. Hirsch, I. Hodkinson, and A. Kurucz. On modal logics between K × K × K and S5 × S5 × S5. Journal of Symbolic Logic, 2001. (In press.)
I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.
I. Hodkinson, A. Kurucz, F. Wolter, and M. Zakharyaschev. Decidable and undecidable fragments of first-order logics of branching time. Manuscript, 2001.
I. Hodkinson. Monodic packed fragment with equality is decidable. Studia Logica, 2001. (To appear.)
H. Kamp. Tense Logic and the Theory of Linear Order. Ph.D. Thesis, University of California, Los Angeles, 1968.
H. Kamp. Formal properties of ‘now’. Theoria, 37:237–273, 1971.
C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev. Tableaux for temporal description logic with constant domains. In Proceedings of the 1st International Joint Conference on Automated Reasoning, IJCAR 2001, pages 121–136, LNAI 2083. Springer-Verlag, 2001.
R. Maddux. The equational theory of CA3 is undecidable. Journal of Symbolic Logic, 45:311–316, 1980.
Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. Springer-Verlag, 1992.
Z. Manna and A. Pnueli. Temporal Veri.cation of Reactive Systems: Safety. Springer-Verlag, 1995.
S. Merz. Decidability and incompleteness results for first-order temporal logics of linear time. Journal of Applied Non-classical Logic, 2, 1992.
A. Pnueli. Applications of temporal logic to the specification and verification of reacrive systems, a survey of current trends. In Current Trends in Concurrency, Lecture Notes in Computer Science, pages 510–584. Springer-Verlag, 1986.
M. Rabin. Decidability of second order theories and automata on infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.
D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, pages 165–176. Morgan Kaufmann, 1992.
M. Reynolds. Axiomatizing first-order temporal logic: Until and Since over linear time. Studia Logica, 57:279–302, 1996.
K. Schild. Combining terminological logics with tense logic. In Proceedings of the 6th Portuguese Conference on Artificial Intelligence, pages 105–120, Porto, 1993.
A. Sernadas. Temporal aspect of logical procedure definition. Information Systems, 5:167–187, 1980.
C. Stirling. Modal and temporal logics. In D. Gabbay, S. Abramsky, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 478–551. Clarendon Press, Oxford, 1992.
H. Sturm and F. Wolter. A tableau calculus for temporal description logic: the expanding domain case. Journal of Logic and Computation, 2001. (In press.)
A. Szalas. Concerning the semantic consequence relation in first-order temporal logic. Journal of Theoretical Computer Science, 47:329–334, 1986.
A. Szalas and L. Holenderski. Incompleteness of first-order temporal logic with until. Theoretical Computer Science, 57:317–325, 1988.
P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 28:119–152, 1985.
F. Wolter and M. Zakharyaschev. Satisfiability problem in description logics with modal operators. In A.G. Cohn, L. Schubert, and S.C. Shapiro, editors, Proceedings of the sixth Conference on Principles of Knowledge Representation and Reasoning, KR’98, Trento, Italy, pages 512–523, Montreal, Canada, 1998. Morgan Kaufmann.
F. Wolter and M. Zakharyaschev. Modal description logics: modalizing roles. Fundamenta Informaticae, 39:411–438, 1999.
F. Wolter and M. Zakharyaschev. Spatial reasoning in RCC-8 with Boolean region terms. In W. Horn, editor, Proceedings of the fourteenth European Conference on Artificial Intelligence, ECAI 2000, Berlin, Germany, pages 244–248. IOS Press, 2000.
F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning based on RCC-8. In Proceedings of the seventh Conference on Principles of Knowledge Representation and Reasoning, KR2000, Breckenridge, USA, pages 3–14, Montreal, Canada, 2000. Morgan Kaufmann.
F. Wolter and M. Zakharyaschev. Temporalizing description logics. In D. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems II, pages 379–401. Studies Press/Wiley, 2000.
F. Wolter and M. Zakharyaschev. Decidable fragments of first-order modal logics. Journal of Symbolic Logic, 2001. (In press).
F. Wolter and M. Zakharyaschev. Qualitative spatio-temporal representation and reasoning: a computational perspective. In G. Lakemeyer and B. Nebel, editors, Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, 2001.
F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied Logic, 2001. (In press).
A. Zanardo. Branching-time logic with quantification over branches: the point of view of modal logic. Journal of Symbolic Logic, 61:1–39, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hodkinson, I., Wolter, F., Zakharyaschev, M. (2001). Monodic Fragments of First-Order Temporal Logics: 2000–2001 A.D.. In: Nieuwenhuis, R., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2001. Lecture Notes in Computer Science(), vol 2250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45653-8_1
Download citation
DOI: https://doi.org/10.1007/3-540-45653-8_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42957-9
Online ISBN: 978-3-540-45653-7
eBook Packages: Springer Book Archive