Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Deductive Proof System for CTL*

  • Conference paper
  • First Online:
CONCUR 2002 — Concurrency Theory (CONCUR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2421))

Included in the following conference series:

Abstract

The paper presents a sound and (relatively) complete deductive proof system for the verification of CTL* properties over possibly infinite-state reactive systems. The proof system is based on a set of proof rules for the verification of basic CTL* formulas, namely CTL* formulas with no embedded path quantifiers. We first show how to decompose the proof of a general (non-basic) CTL* formula into proofs of basic CTL* formulas. We then present proof rules for some of the most useful basic ctl formulas, then present a methodology for transforming an arbitrary basic formula into one of these special cases.

This research was supported in part by the John von Newman Minerva Center for the Verification of Reactive Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite state concurrent systems using temporal logic specifications. ACM Trans. Prog. Lang. Sys., 8:244–263, 1986.

    Article  MATH  Google Scholar 

  2. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. CAV’94, LNCS 818, pages 415–427.

    Google Scholar 

  3. M. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved automata generation for linear time temporal logic. CAV’99, LNCS 1633, pages 255–265.

    Google Scholar 

  4. E. Emerson. Temporal and modal logics. In J. van Leeuwen, editor, Handbook of theoretical computer science, volume B, pages 995–1072. Elsevier, 1990.

    Google Scholar 

  5. E. Emerson and C. Lei. Modalities for model checking: Branching time strikes back. POPL’85, pages 84–96.

    Google Scholar 

  6. D. Gabbay. The declarative past and imperative future.In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lect. Notes in Comp. Sci., pages 407–448. Springer-Verlag, 1987.

    Google Scholar 

  7. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. CAV’01, LNCS 2102.

    Google Scholar 

  8. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. PSTV’95, pages 3–18.

    Google Scholar 

  9. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. PSTV’95, pages 3–18.

    Google Scholar 

  10. Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full propositional temporal logic. CAV’93, pages 97–109.

    Google Scholar 

  11. Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Information and Computation, a special issue on Compositionality, 163:203–243, 2000.

    MATH  MathSciNet  Google Scholar 

  12. Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifications. Proc. 25th Int. Colloq. Aut. Lang. Prog., LNCS 1443, pages 1–16, 1998.

    Google Scholar 

  13. Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. LTL Model Checking with Strong Fairness. Technical Report mcs01-07, The Weizmann Institute of Science, 2001. Submitted to Formal Methods in System Design.

    Google Scholar 

  14. D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of concurrent termination.In Proc. 8th Int. Colloq. Aut. Lang. Prog., LNCS 115, pages 264–277, 1981.

    Google Scholar 

  15. O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy their linear specification. POPL’85, pages 97–107.

    Google Scholar 

  16. Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. Chang, M. Colón, L.D. Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal Prover. Stanford University, 1994.

    Google Scholar 

  17. Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comp. Sci., 83(1):97–130, 1991.

    Article  MATH  Google Scholar 

  18. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer Verlag, New York, 1991.

    MATH  Google Scholar 

  19. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New York, 1995.

    Google Scholar 

  20. K. Namjoshi. Certifying model checkers. CAV’01, LNCS 2102.

    Google Scholar 

  21. D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. FTTCS’01, LNCS 2245, pages 292–304.

    Google Scholar 

  22. A. Pnueli and R. Rosner. A framework for the synthesis of reactive modules. Concurrency 88, LNCS 335, pages 4–17.

    Google Scholar 

  23. M. Reynolds. An axiomatization of full computation tree logic. Journal of Symbolic Logic, 66(3):1011–1057, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Sipma, T. Uribe, and Z. Manna. Deductive model checking. Formal Methods in System Design, 15(1):49–74, 1999.

    Article  Google Scholar 

  25. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. CAV’00, LNCS 1855, pages 248–263.

    Google Scholar 

  26. C. Sprenger. On the Verification of CTL Properties of Infinite-State Reactive Systems. PhD thesis, Swiss Federal Institute of Technology, Lausanne, 2000.

    Google Scholar 

  27. F. Stomp, W.-P. de Roever, and R. Gerth. The μ-calculus as an assertion language for fairness arguments. Inf. and Comp., 82:278–322, 1989.

    Article  MATH  Google Scholar 

  28. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. and Comp., 115(1):1–37, 1994.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pnueli, A., Kesten, Y. (2002). A Deductive Proof System for CTL* . In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds) CONCUR 2002 — Concurrency Theory. CONCUR 2002. Lecture Notes in Computer Science, vol 2421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45694-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45694-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44043-7

  • Online ISBN: 978-3-540-45694-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics