Abstract
The paper presents a sound and (relatively) complete deductive proof system for the verification of CTL* properties over possibly infinite-state reactive systems. The proof system is based on a set of proof rules for the verification of basic CTL* formulas, namely CTL* formulas with no embedded path quantifiers. We first show how to decompose the proof of a general (non-basic) CTL* formula into proofs of basic CTL* formulas. We then present proof rules for some of the most useful basic ctl formulas, then present a methodology for transforming an arbitrary basic formula into one of these special cases.
This research was supported in part by the John von Newman Minerva Center for the Verification of Reactive Systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite state concurrent systems using temporal logic specifications. ACM Trans. Prog. Lang. Sys., 8:244–263, 1986.
E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. CAV’94, LNCS 818, pages 415–427.
M. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved automata generation for linear time temporal logic. CAV’99, LNCS 1633, pages 255–265.
E. Emerson. Temporal and modal logics. In J. van Leeuwen, editor, Handbook of theoretical computer science, volume B, pages 995–1072. Elsevier, 1990.
E. Emerson and C. Lei. Modalities for model checking: Branching time strikes back. POPL’85, pages 84–96.
D. Gabbay. The declarative past and imperative future.In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lect. Notes in Comp. Sci., pages 407–448. Springer-Verlag, 1987.
P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. CAV’01, LNCS 2102.
R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. PSTV’95, pages 3–18.
R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. PSTV’95, pages 3–18.
Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full propositional temporal logic. CAV’93, pages 97–109.
Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Information and Computation, a special issue on Compositionality, 163:203–243, 2000.
Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifications. Proc. 25th Int. Colloq. Aut. Lang. Prog., LNCS 1443, pages 1–16, 1998.
Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. LTL Model Checking with Strong Fairness. Technical Report mcs01-07, The Weizmann Institute of Science, 2001. Submitted to Formal Methods in System Design.
D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of concurrent termination.In Proc. 8th Int. Colloq. Aut. Lang. Prog., LNCS 115, pages 264–277, 1981.
O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy their linear specification. POPL’85, pages 97–107.
Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. Chang, M. Colón, L.D. Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal Prover. Stanford University, 1994.
Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comp. Sci., 83(1):97–130, 1991.
Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer Verlag, New York, 1991.
Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New York, 1995.
K. Namjoshi. Certifying model checkers. CAV’01, LNCS 2102.
D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. FTTCS’01, LNCS 2245, pages 292–304.
A. Pnueli and R. Rosner. A framework for the synthesis of reactive modules. Concurrency 88, LNCS 335, pages 4–17.
M. Reynolds. An axiomatization of full computation tree logic. Journal of Symbolic Logic, 66(3):1011–1057, 2001.
H. Sipma, T. Uribe, and Z. Manna. Deductive model checking. Formal Methods in System Design, 15(1):49–74, 1999.
F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. CAV’00, LNCS 1855, pages 248–263.
C. Sprenger. On the Verification of CTL Properties of Infinite-State Reactive Systems. PhD thesis, Swiss Federal Institute of Technology, Lausanne, 2000.
F. Stomp, W.-P. de Roever, and R. Gerth. The μ-calculus as an assertion language for fairness arguments. Inf. and Comp., 82:278–322, 1989.
M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. and Comp., 115(1):1–37, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pnueli, A., Kesten, Y. (2002). A Deductive Proof System for CTL* . In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds) CONCUR 2002 — Concurrency Theory. CONCUR 2002. Lecture Notes in Computer Science, vol 2421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45694-5_2
Download citation
DOI: https://doi.org/10.1007/3-540-45694-5_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44043-7
Online ISBN: 978-3-540-45694-0
eBook Packages: Springer Book Archive