Abstract
In this paper, we show that the natural and most common way of implementing modes of operation for cryptographic primitives often leads to insecure implementations. We illustrate this problem by attacking several modes of operation that were proved to be semantically secure against either chosen plaintext or chosen ciphertext attacks.
The problem stems from the simple following fact: in the definition and proofs of semantic security, messages are considered as atomic objects that cannot be split; however, in most practical implementations, messages are subdivided into smaller chunks than can be easily manipulated. Depending on the implementation, each chunk may consist of one or several blocks of the underlying primitive. The key point here is that upon reception of a processed chunk, the attacker can now adapt his choice for the next chunk. Since the possibility of adapting within a single message is not taken into account in the current security models, this leaves room for unexpected attacks.
We illustrate this new paradigm by attacking three symmetric and hybrid encryption schemes based on the chaining mode in spite of their security proofs.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-Line Ciphers and the Hash-CBC Construction. In J. Kilian, editor, Advances in Cryptology — Crypto’01, volume 2139 of Lecture Notes in Computer Science, pages 292–309. Springer-Verlag, Berlin, 2001.
M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric Encryption. In Proceedings of the 38th Symposium of Fundations of Computer Science. IEEE, 1997.
M. Bellare and C. Namprempre. Authenticated Encryption: Relations among notions and analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in Cryptology — Asiacrypt’00, volume 1976 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000.
V.D. Gligor and P. Donescu. Fast Encryption and Authentication: XCBC and XECB Authentication Modes. In Fast Software Encryption, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2001.
J.S Coron, H. Handshuh, M. Joye, P. Paillier, D. Pointcheval, and C. Tymen. Reallife Chosen-Ciphertext Secure Encryption of Arbitrary-Length Messages. In D. Naccache, editor, PKC’2002, volume 2274 of Lecture Notes in Computer Science, pages 17–33. Springer-Verlag, Berlin, 2002.
A. Desai, A. Hevia, and Y.L Yin. A Practice-Oriented Treatment of Pseudorandom Number Generators. In L. Knudsen, editor, Advances in Cryptology — Eurocrypt 2002, volume 2332 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2002.
R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In Burt Kaliski, editor, Advances in Cryptology — Crypto’97, volume 1294 of Lecture Notes in Computer Science, pages 180–197. Springer-Verlag, Berlin, 1997.
S. Halevi. An Observation regarding Jutla’s modes of operation. Crytology ePrint archive, Report 2001/015, available at http://www.eprint.iacr.org.
C. Jutla. Encryption modes with almost free message integrity. Cryptology ePrint archive, Report 2000/039, available at http://www.eprint.iacr.org.
C. Jutla. Encryption modes with almost free message integrity. In B. Ptzmann, editor, Advances in Cryptology — Eurocrypt’01, volume 2045 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2001.
J. Katz and M. Yung. Unforgeable Encryption and Chosen Ciphertext Secure Modes of Operation. In Bruce Schneier, editor, Fast Software Encryption, volume 1978 of Lectures Notes in Computer Science. Springer-Verlag Berlin, 2000.
L. Knudsen. Block chaining modes of operation. Technical report, Department of Informatics, University of Bergen, 2000.
P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption. In Eighth ACM conference on Computer and Communications Security. ACM Press, 2001.
T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH Transport Layer Protocol, Network Working Group. January 2002. Internet-Draft available at http://www.ietf.org/internet-drafts/draft-ietf-secsh-transport-12.txt.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Joux, A., Martinet, G., Valette, F. (2002). Blockwise-Adaptive Attackers Revisiting the (In)Security of Some Provably Secure Encryption Modes: CBC, GEM, IACBC. In: Yung, M. (eds) Advances in Cryptology — CRYPTO 2002. CRYPTO 2002. Lecture Notes in Computer Science, vol 2442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45708-9_2
Download citation
DOI: https://doi.org/10.1007/3-540-45708-9_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44050-5
Online ISBN: 978-3-540-45708-4
eBook Packages: Springer Book Archive