Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Framework for Order-Sorted Algebra

  • Conference paper
  • First Online:
Algebraic Methodology and Software Technology (AMAST 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2422))

Abstract

Order-sorted algebra is a generalization of many-sorted algebra obtained by having a partially ordered set of sorts rather than merely a set. It has numerous applications in computer science. There are several variants of order sorted algebra, and some relationships between these are known. However there seems to be no single conceptual framework within which all the connections between the variants can be understood. This paper proposes a new approach to the understanding of order-sorted algebra. Evidence is provided for the viability of the approach, but much further work will be required to complete the research programme which is initiated here.

The programme is based on the investigation of two topics. Firstly an analysis of the various categories of order-sorted sets and their relationships, and, secondly, the development of abstract notions of order-sorted theory, as opposed to presentations given by a signature of operation symbols. As a first step, categories of order-sorted sets are described, adjunctions between the categories are obtained, and results on ordersorted theories as categories, in the sense of Lawvere, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Aczel. Term declaration logic and generalized composita. In 6th Annual IEEE Symposium on Logic in Computer Science, Amsterdam, July 1991, pages 22–30. IEEE Computer Society, 1991.

    Google Scholar 

  2. A. J. Alencar and J. A. Goguen. Specification in OOZE with examples. In K. Lano and H. Haughton, editors, Object-Oriented Specification Case Studies, chapter 8, pages 158–183. Prentice-Hall, 1994.

    Google Scholar 

  3. J. Adámek and J. Rosický. Locally Presentable and Accessible Categories, volume 189 of London Mathematical Society Lecture Notes Series. Cambridge University Press, 1994.

    Google Scholar 

  4. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational logic. Theoretical Computer Science, 236:35–132, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Beierle and G. Meyer. Run-time type computations in the Warren abstract machine. Journal of Logic Programming, 18(2):123–148, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. L. Crole. Categories for Types. Cambridge University Press, 1993.

    Google Scholar 

  7. M. Erwig and R. H. Güting. Explicit graphs in a functional model for spatial databases. IEEE Transactions on Knowledge and Data Engineering, 6(5):787–804, 1994.

    Article  Google Scholar 

  8. J. A. Goguen and R. Diaconescu. An Oxford survey of order-sorted algebra. Mathematical Structures in Computer Science, 4:363–392, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:217–273, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. A. Goguen. Order sorted algebras: Exceptions and error sorts, coercions and overloaded operators. Semantics and Theory of Computation Report 14, University of California at Los Angeles. Computer Science Department, December 1978.

    Google Scholar 

  11. R. Goldblatt. Topoi, The Categorial Analysis of Logic, volume 98 of Studies in Logic and the Foundations of Mathematics. North-Holland, revised edition, 1984. First edition 1979.

    Google Scholar 

  12. A. E. Haxthausen. Order-sorted algebraic specifications with higher-order functions. In V. S. Alagar and M. Nivat, editors, Algebraic Methodology and Software Technology, 4th International Conference, AMAST’ 95, Montreal, July 1995, volume 936 of Lecture Notes in Computer Science, pages 133–151. Springer-Verlag, 1995.

    Google Scholar 

  13. A. C. Hearn and E. Schrufer. A computer algebra system based on ordersorted algebra. Journal of Symbolic Computation, 19(1–3):65–77, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. B. Jay. Extending properties to categories of partial maps. Technical Report ECS-LFCS-90-107, Laboratory for Foundations of Computer Science, University of Edinburgh, February 1990.

    Google Scholar 

  15. O. Keane. Abstract Horn theories. In F. W. Lawvere, C. Maurer, and G. C. Wraith, editors, Model Theory and Topoi, volume 445 of Lecture Notes in Mathematics, pages 15–50. Springer-Verlag, 1975.

    Google Scholar 

  16. J. Meseguer, J. A. Goguen, and G. Smolka. Order sorted unification. Journal of Symbolic Computation, 8:383–413, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Meinke and J. V. Tucker, editors. Many-sorted Logic and its Applications. Wiley, 1993.

    Google Scholar 

  18. A. Oberschelp. Untersuchungen zur Mehrsortigen Quantoren Logik. Mathematische Annalen, 145:297–333, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Poigné. Parameterization for order-sorted algebraic specification. Journal of Computer and System Sciences, 40:229–268, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  20. Z. Qian. Another look at parameterization for order-sorted algebraic specifications. Journal of Computer and System Sciences, 49:620–666, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Robinson. Variations on algebra: monadicity and generalisations of equational theories. Technical Report 6/94, School of Cognitive and Computing Sciences, University of Sussex, April 1994.

    Google Scholar 

  22. D. E. Rydeheard and J. G. Stell. Foundations of equational deduction: A categorical treatment of equational proofs and unification algorithms. In D. H. Pitt et al., editors, Category Theory and Computer Science, Edinburgh, 1987, volume 283 of Lecture Notes in Computer Science, pages 114–139. Springer-Verlag, 1987.

    Google Scholar 

  23. M. Schmidt-Schauβ. Computational Aspects of an Order-Sorted Logic with Term Declarations, volume 395 of Lecture notes in Artificial Intelligence. Springer-Verlag, 1989.

    Google Scholar 

  24. J. G. Stell. Unique-sort order-sorted theories—a description as monad morphisms. In S. Kaplan and M. Okada, editors, Proceedings of 2nd International Workshop on Conditional and Typed Rewriting Systems, Montreal, June 1990, volume 516 of Lecture Notes in Computer Science, pages 389–400. Springer-Verlag, 1991.

    Google Scholar 

  25. J. G. Stell. Categorical Aspects of Unification and Rewriting. PhD thesis, University of Manchester, 1992.

    Google Scholar 

  26. U. Waldmann. Semantics of order-sorted specifications. Theoretical Computer Science, 94:1–35, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Deductive and Object-Oriented Databases. Second International Conference, DOOD’91, volume 566 of Lecture Notes in Computer Science, pages 431–452. Springer-Verlag, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stell, J.G. (2002). A Framework for Order-Sorted Algebra. In: Kirchner, H., Ringeissen, C. (eds) Algebraic Methodology and Software Technology. AMAST 2002. Lecture Notes in Computer Science, vol 2422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45719-4_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45719-4_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44144-1

  • Online ISBN: 978-3-540-45719-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics