Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Investigations into Market Index Trading Models Using Evolutionary Automatic Programming

  • Conference paper
  • First Online:
Artificial Intelligence and Cognitive Science (AICS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2464))

Included in the following conference series:

Abstract

This study examines the potential of an evolutionary automatic programming methodology to uncover a series of useful technical tradingrules for the US S&P stock index. Index values for the period 01/01/1991 to 01/10/1997 are used to train and test the evolved rules. A number of replacement strategies, and a novel approach to constant evolution are investigated. The findings indicate that the automatic programming methodology has much potential with the evolved rules makingg ains of approximately 13% over a 6 year test period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F., Karjalainen, R. (1999) Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51, pp. 245–271, 1999.

    Article  Google Scholar 

  2. Brock, W., Lakonishok, J. and LeBaron B. (1992). ‘Simple Technical Trading Rules and the Stochastic Properties of Stock Returns’, Journal of Finance, 47(5):1731–1764.

    Article  Google Scholar 

  3. Brown, S., Goetzmann W. and Kumar A. (1998). ‘The Dow Theory: William Peter Hamilton’s Track Record Reconsidered’, Journal of Finance, 53(4):1311–1333.

    Article  Google Scholar 

  4. Chan, L.K.C., Jegadeesh, N. and Lakonishok, J. (1996). ‘Momentum strategies’, Journal of Finance, Vol. 51, No. 5, pp. 1681–1714.

    Article  Google Scholar 

  5. Cross, F. (1973). ‘The Behaviour of Stock prices on Friday and Monday’, Financial Analysts’ Journal, Vol. 29(6), pp. 67–74.

    Article  Google Scholar 

  6. DeBondt, W. and Thaler, R. (1987). ‘Further Evidence on Investor Overreaction and Stock Market Seasonality’, Journal of Finance, Vol. 42(3):557–581.

    Article  Google Scholar 

  7. Dissanaike, G. (1997). ‘Do stock market investors overreact?’, Journal of Business Finance & Accounting(UK), Vol. 24, No. 1, pp. 27–50.

    Article  Google Scholar 

  8. Hong, H., Lim, T. and Stein, J. (1999). ‘Bad News Travels Slowly: Size, Analyst Coverage and the Profitability of Momentum Strategies’, Research Paper No. 1490, Graduate School of Business, Stanford University.

    Google Scholar 

  9. Iba H. and Nikolaev N. (2000). ‘Genetic Programming Polynomial Models of Financial Data Series’, In Proc. of CEC 2000, pp. 1459–1466, IEEE Press.

    Google Scholar 

  10. Koza, J. (1992). Genetic Programming. MIT Press.

    Google Scholar 

  11. Murphy, John J. (1999). Technical Analysis of the Financial Markets, New York: New York Institute of Finance.

    Google Scholar 

  12. O'Neill M, Brabazon A., Ryan C. (2002). ForecastingMark et Indices usingEv olutionary Automatic Programming: A case study. Genetic Algorithms and Genetic Programming in Economics and Finance, Kluwer Academic Publishers 2002, in print.

    Google Scholar 

  13. O'Neill M., Brabazon A., Ryan C., Collins J.J. (2001). EvolvingMark et Index TradingRules usingGrammatical Evolution. In Applications of Evolutionary Computing, Proc. of EvoWorkshops 2001. LNCS 2037, pp. 343–352.

    Chapter  Google Scholar 

  14. O'Neill M., Brabazon A., Ryan C., Collins J.J. (2001). Developinga Market Timing System usingGrammatical Evolution. In Proc. of GECCO 2001, pp. 1375–1381.

    Google Scholar 

  15. O'Neill M. (2001). Automatic Programming in an Arbitrary Language: Evolving Programs with Grammatical Evolution. PhD thesis, University Of Limerick, 2001.

    Google Scholar 

  16. O'Neill M., Ryan C. (2001) Grammatical Evolution. IEEE Trans.Evolutionary Computation. 2001.

    Google Scholar 

  17. Pring, M. (1991). Technical analysis explained: the successful investor’s guide to spottingin vestment trends and turningp oints, New York: McGraw-Hill Inc.

    Google Scholar 

  18. Ryan C., Collins J.J., O'Neill M. (1998). Grammatical Evolution: Evolving Programs for an Arbitrary Language. Lecture Notes in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming, pp. 83–95. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dempsey, I., O’Neill, M., Brabazon, A. (2002). Investigations into Market Index Trading Models Using Evolutionary Automatic Programming. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds) Artificial Intelligence and Cognitive Science. AICS 2002. Lecture Notes in Computer Science(), vol 2464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45750-X_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45750-X_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44184-7

  • Online ISBN: 978-3-540-45750-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics