Abstract
This study examines the potential of an evolutionary automatic programming methodology to uncover a series of useful technical tradingrules for the US S&P stock index. Index values for the period 01/01/1991 to 01/10/1997 are used to train and test the evolved rules. A number of replacement strategies, and a novel approach to constant evolution are investigated. The findings indicate that the automatic programming methodology has much potential with the evolved rules makingg ains of approximately 13% over a 6 year test period.
Preview
Unable to display preview. Download preview PDF.
References
Allen, F., Karjalainen, R. (1999) Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51, pp. 245–271, 1999.
Brock, W., Lakonishok, J. and LeBaron B. (1992). ‘Simple Technical Trading Rules and the Stochastic Properties of Stock Returns’, Journal of Finance, 47(5):1731–1764.
Brown, S., Goetzmann W. and Kumar A. (1998). ‘The Dow Theory: William Peter Hamilton’s Track Record Reconsidered’, Journal of Finance, 53(4):1311–1333.
Chan, L.K.C., Jegadeesh, N. and Lakonishok, J. (1996). ‘Momentum strategies’, Journal of Finance, Vol. 51, No. 5, pp. 1681–1714.
Cross, F. (1973). ‘The Behaviour of Stock prices on Friday and Monday’, Financial Analysts’ Journal, Vol. 29(6), pp. 67–74.
DeBondt, W. and Thaler, R. (1987). ‘Further Evidence on Investor Overreaction and Stock Market Seasonality’, Journal of Finance, Vol. 42(3):557–581.
Dissanaike, G. (1997). ‘Do stock market investors overreact?’, Journal of Business Finance & Accounting(UK), Vol. 24, No. 1, pp. 27–50.
Hong, H., Lim, T. and Stein, J. (1999). ‘Bad News Travels Slowly: Size, Analyst Coverage and the Profitability of Momentum Strategies’, Research Paper No. 1490, Graduate School of Business, Stanford University.
Iba H. and Nikolaev N. (2000). ‘Genetic Programming Polynomial Models of Financial Data Series’, In Proc. of CEC 2000, pp. 1459–1466, IEEE Press.
Koza, J. (1992). Genetic Programming. MIT Press.
Murphy, John J. (1999). Technical Analysis of the Financial Markets, New York: New York Institute of Finance.
O'Neill M, Brabazon A., Ryan C. (2002). ForecastingMark et Indices usingEv olutionary Automatic Programming: A case study. Genetic Algorithms and Genetic Programming in Economics and Finance, Kluwer Academic Publishers 2002, in print.
O'Neill M., Brabazon A., Ryan C., Collins J.J. (2001). EvolvingMark et Index TradingRules usingGrammatical Evolution. In Applications of Evolutionary Computing, Proc. of EvoWorkshops 2001. LNCS 2037, pp. 343–352.
O'Neill M., Brabazon A., Ryan C., Collins J.J. (2001). Developinga Market Timing System usingGrammatical Evolution. In Proc. of GECCO 2001, pp. 1375–1381.
O'Neill M. (2001). Automatic Programming in an Arbitrary Language: Evolving Programs with Grammatical Evolution. PhD thesis, University Of Limerick, 2001.
O'Neill M., Ryan C. (2001) Grammatical Evolution. IEEE Trans.Evolutionary Computation. 2001.
Pring, M. (1991). Technical analysis explained: the successful investor’s guide to spottingin vestment trends and turningp oints, New York: McGraw-Hill Inc.
Ryan C., Collins J.J., O'Neill M. (1998). Grammatical Evolution: Evolving Programs for an Arbitrary Language. Lecture Notes in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming, pp. 83–95. Springer-Verlag.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dempsey, I., O’Neill, M., Brabazon, A. (2002). Investigations into Market Index Trading Models Using Evolutionary Automatic Programming. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds) Artificial Intelligence and Cognitive Science. AICS 2002. Lecture Notes in Computer Science(), vol 2464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45750-X_21
Download citation
DOI: https://doi.org/10.1007/3-540-45750-X_21
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44184-7
Online ISBN: 978-3-540-45750-3
eBook Packages: Springer Book Archive