Abstract
We introduce NeighborNet, a network construction and data representation method that combines aspects of the neighbor joining (NJ) and SplitsTree. Like NJ, NeighborNet uses agglomeration: taxa are combined into progressively larger and larger overlapping clusters. Like SplitsTree, NeighborNet constructs networks rather than trees, and so can be used to represent multiple phylogenetic hypotheses simultaneously, or to detect complex evolutionary processes like recombination, lateral transfer and hybridization. NeighborNet tends to produce networks that are substantially more resolved than those made with SplitsTree. The method is efficient (O(n 3) time) and is well suited for the preliminary analyses of complex phylogenetic data. We report results of three case studies: one based on mitochondrial gene order data from early branching eukaryotes, another based on nuclear sequence data from New Zealand alpine buttercups (Ranunculi), and a third on poorly corrected synthetic data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Atteson, The performance of Neighbor-Joining methods of phylogenetic reconstruction, Algorithmica, 25 (1999) 251–278.
J.C. Aude, Y. Diaz-Lazcoz Y., J.J. Codani and J.L. Risler, Application of the pyramidal clustering method to biological objects, Comput. Chem. 23, (1999) 303–315.
H.-J. Bandelt, A. Dress, A canonical decomposition theory for metrics on a finite set, Advances in Mathematics, 92 (1992) 47–105.
H.-J. Bandelt, P. Forster, B. Sykes, M. Richards, Mitochondrial portraits of human populations, Genetics 141 (1995) 743–753.
H.-J. Bandelt, P. Forster, A. Röhl, Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 16 (1999) 37–48.
A. C. Barbrook, C. J. Howe, N. Blake, P. Robinson, The phylogeny of The Canterbury Tales, Nature, 394 (1998) 839.
J. Barthélemy, A. Guenoche, Trees and Proximity Representations, John Wiley & Sons, Chichester New York Brisbane Toronto Singapore, 1991.
P. Bertrand, Structural properties of pyramidal clustering, DIMACS, 19 (1995), 35–53.
D. Bryant. Canonizing neighbor-joining. in preparation.
D. Bryant, V. Moulton. The consistency of NeighborNet. in preparation.
P. Buneman, The recovery of trees from measures of dissimilarity. In F. Hodson et al., Math. in the Archeological and Historical Sci., (pp.387–395), Edinburgh University Press, 1971.
V. Chepoi, B. Fichet, A note on circular decomposable metrics. Geom. Dedicata, 69 (1998) 237–240.
G. Christopher, M. Farach, M. Trick, The structure of circular decomposable metrics. Algorithms—ESA’ 96 (Barcelona), 486–500, LNCS 1136, Springer, Berlin, 1996.
E. Diday, Une representation des classes empi tantes: les pyramides. Rapport de recherche INRIA 291 (1984).
J. Dopazo, A. Dress, A. von Haeseler, Split decomposition: A technique to analyze viral evolution, PNAS, 90 (1993) 10320–10324.
A. Dress, M. Hendy, K. Huber, V. Moulton, On the number of vertices and edges of the Buneman graph, Annals Comb., 1 (1997) 329–337.
A. Dress, K. Huber, V. Moulton, An exceptional split geometry, Annals Comb., 4 (2000) 1–11.
A. Dress, D. Huson, Computing phylogenetic networks from split systems, Mnscrpt, 1998.
P.L. Erdös, M. Steel, L.A. Szkely, and T. Warnow, A few logs suffice to build (almost) all trees (Part 2) Theoretical Computer Science 221, (1999) 77–118.
M. Farach, Recognizing circular decomposable metrics, J. Comp. Bio., 4 (1997) 157–162.
F.J.F. Fisher. The alpine ranunculi of New Zealand. DSIR publishing, New Zealand. 1965.
O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Molecular Biology and Evolution, 14(7), (1997) 685–695.
O. Gascuel, Concerning the NJ algorithm and its unweighted version, UNJ. In B. Mirkin, F.R. McMorris, F.S. Roberts, A. Rzhetsky, Math. Hierarch. and Biol., AMS, (1997) 149–170.
O. Gascuel, Data model and classification by trees: the minimum variance reduction (MVR) method, Journal of Classification, 17 (2000) 67–99.
S. Guindon and O. Gascuel Efficient Biased Estimation of Evolutionary Distances When Substitution Rates Vary Across Sites Mol. Biol. Evol., 19, (2002) 534–543.
B. Holland, K. Huber, A. Dress, V. Moulton, Some new techniques in statistical geometry, (in preparation).
E. Holmes, M. Worobey, A. Rambaut, Phylogenetic evidence for recombination in dengue virus, Mol. Bio. Evol., 16 (1999) 405–409.
D. Huson, SplitsTree: a program for analyzing and visualizing evolutionary data, Bioinformatics, 14 (1998) 68–73.
P. Lockhart, P. McLenachan, D. Havell, D. Glenny, D. Huson, U. Jensen, Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decomposition, Ann. Missouri. Bot. Gard., 88 (2001) 458–477.
Maddison, D. R., Swofford, D. L., Maddison, W. P. NEXUS: An extensible file format for systematic information. Systematic Biology 46(4) 1997, 590–621.
V. Makarenkov, T-REX: reconstructing and visualizing phylogenetic trees and reticulation networks, Bioinformatics, 17 (2001) 664–668.
P. Legendre, V. Makarenkov, Reconstruction of biogeographic and evolutionary networks using retiulograms. Syst. Biol. 51 (2) (2002) 199–216.
N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstruction of phylogenetic trees, Mol. Bio. Evol., 4 (1987) 406–425.
M. Salemi, M. Leiws, J. Egan, W. Hall, J. Desmyter, A.-M. Vandamme, Different population dynamics of human T cell lymphotropic virus type II in intrevenous drug users compared with endemically infected tribes, PNAS, 96 (1999) 13253–13258.
D. Sanko., D. Bryant, M. Denault, B.F. Lang, and G. Burger, Early eukaryote evolution based on mitochondrial gene order breakpoints. J. of Comp. Biology, 7(3) (2000) 521–536.
S. Sattath, A. Tversky., Additive similarity trees, Psychometrika, 42 (3) 319–345.
R.R. Sokal and C.D. Michener. A statistical method for evaluating systematic relationships. Univ. Kansas Science Bull., 38 (1958) 1409–1438.
K. Strimmer, C. Wiuf, V. Moulton, Recombination analysis using directed graphical models, Molecular Biology and Evolution, 18 (2001) 97–99.
D. Swofford, G. J. Olsen, P. J. Waddell and D. M. Hillis. Phylogenetic Inference, in Molecular Systematics 2nd Edition, Hillis, D.M. and Moritz, C. and Mable, B.K. (eds). Sinauer (1996) 407–514.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bryant, D., Moulton, V. (2002). NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_28
Download citation
DOI: https://doi.org/10.1007/3-540-45784-4_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44211-0
Online ISBN: 978-3-540-45784-8
eBook Packages: Springer Book Archive