Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

Abstract

We introduce NeighborNet, a network construction and data representation method that combines aspects of the neighbor joining (NJ) and SplitsTree. Like NJ, NeighborNet uses agglomeration: taxa are combined into progressively larger and larger overlapping clusters. Like SplitsTree, NeighborNet constructs networks rather than trees, and so can be used to represent multiple phylogenetic hypotheses simultaneously, or to detect complex evolutionary processes like recombination, lateral transfer and hybridization. NeighborNet tends to produce networks that are substantially more resolved than those made with SplitsTree. The method is efficient (O(n 3) time) and is well suited for the preliminary analyses of complex phylogenetic data. We report results of three case studies: one based on mitochondrial gene order data from early branching eukaryotes, another based on nuclear sequence data from New Zealand alpine buttercups (Ranunculi), and a third on poorly corrected synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Atteson, The performance of Neighbor-Joining methods of phylogenetic reconstruction, Algorithmica, 25 (1999) 251–278.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.C. Aude, Y. Diaz-Lazcoz Y., J.J. Codani and J.L. Risler, Application of the pyramidal clustering method to biological objects, Comput. Chem. 23, (1999) 303–315.

    Article  Google Scholar 

  3. H.-J. Bandelt, A. Dress, A canonical decomposition theory for metrics on a finite set, Advances in Mathematics, 92 (1992) 47–105.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.-J. Bandelt, P. Forster, B. Sykes, M. Richards, Mitochondrial portraits of human populations, Genetics 141 (1995) 743–753.

    Google Scholar 

  5. H.-J. Bandelt, P. Forster, A. Röhl, Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 16 (1999) 37–48.

    Google Scholar 

  6. A. C. Barbrook, C. J. Howe, N. Blake, P. Robinson, The phylogeny of The Canterbury Tales, Nature, 394 (1998) 839.

    Article  Google Scholar 

  7. J. Barthélemy, A. Guenoche, Trees and Proximity Representations, John Wiley & Sons, Chichester New York Brisbane Toronto Singapore, 1991.

    MATH  Google Scholar 

  8. P. Bertrand, Structural properties of pyramidal clustering, DIMACS, 19 (1995), 35–53.

    MathSciNet  Google Scholar 

  9. D. Bryant. Canonizing neighbor-joining. in preparation.

    Google Scholar 

  10. D. Bryant, V. Moulton. The consistency of NeighborNet. in preparation.

    Google Scholar 

  11. P. Buneman, The recovery of trees from measures of dissimilarity. In F. Hodson et al., Math. in the Archeological and Historical Sci., (pp.387–395), Edinburgh University Press, 1971.

    Google Scholar 

  12. V. Chepoi, B. Fichet, A note on circular decomposable metrics. Geom. Dedicata, 69 (1998) 237–240.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Christopher, M. Farach, M. Trick, The structure of circular decomposable metrics. Algorithms—ESA’ 96 (Barcelona), 486–500, LNCS 1136, Springer, Berlin, 1996.

    Google Scholar 

  14. E. Diday, Une representation des classes empi tantes: les pyramides. Rapport de recherche INRIA 291 (1984).

    Google Scholar 

  15. J. Dopazo, A. Dress, A. von Haeseler, Split decomposition: A technique to analyze viral evolution, PNAS, 90 (1993) 10320–10324.

    Article  Google Scholar 

  16. A. Dress, M. Hendy, K. Huber, V. Moulton, On the number of vertices and edges of the Buneman graph, Annals Comb., 1 (1997) 329–337.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Dress, K. Huber, V. Moulton, An exceptional split geometry, Annals Comb., 4 (2000) 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Dress, D. Huson, Computing phylogenetic networks from split systems, Mnscrpt, 1998.

    Google Scholar 

  19. P.L. Erdös, M. Steel, L.A. Szkely, and T. Warnow, A few logs suffice to build (almost) all trees (Part 2) Theoretical Computer Science 221, (1999) 77–118.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Farach, Recognizing circular decomposable metrics, J. Comp. Bio., 4 (1997) 157–162.

    Article  Google Scholar 

  21. F.J.F. Fisher. The alpine ranunculi of New Zealand. DSIR publishing, New Zealand. 1965.

    Google Scholar 

  22. O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Molecular Biology and Evolution, 14(7), (1997) 685–695.

    Google Scholar 

  23. O. Gascuel, Concerning the NJ algorithm and its unweighted version, UNJ. In B. Mirkin, F.R. McMorris, F.S. Roberts, A. Rzhetsky, Math. Hierarch. and Biol., AMS, (1997) 149–170.

    Google Scholar 

  24. O. Gascuel, Data model and classification by trees: the minimum variance reduction (MVR) method, Journal of Classification, 17 (2000) 67–99.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Guindon and O. Gascuel Efficient Biased Estimation of Evolutionary Distances When Substitution Rates Vary Across Sites Mol. Biol. Evol., 19, (2002) 534–543.

    Google Scholar 

  26. B. Holland, K. Huber, A. Dress, V. Moulton, Some new techniques in statistical geometry, (in preparation).

    Google Scholar 

  27. E. Holmes, M. Worobey, A. Rambaut, Phylogenetic evidence for recombination in dengue virus, Mol. Bio. Evol., 16 (1999) 405–409.

    Google Scholar 

  28. D. Huson, SplitsTree: a program for analyzing and visualizing evolutionary data, Bioinformatics, 14 (1998) 68–73.

    Article  Google Scholar 

  29. P. Lockhart, P. McLenachan, D. Havell, D. Glenny, D. Huson, U. Jensen, Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decomposition, Ann. Missouri. Bot. Gard., 88 (2001) 458–477.

    Article  Google Scholar 

  30. Maddison, D. R., Swofford, D. L., Maddison, W. P. NEXUS: An extensible file format for systematic information. Systematic Biology 46(4) 1997, 590–621.

    Article  Google Scholar 

  31. V. Makarenkov, T-REX: reconstructing and visualizing phylogenetic trees and reticulation networks, Bioinformatics, 17 (2001) 664–668.

    Article  Google Scholar 

  32. P. Legendre, V. Makarenkov, Reconstruction of biogeographic and evolutionary networks using retiulograms. Syst. Biol. 51 (2) (2002) 199–216.

    Article  Google Scholar 

  33. N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstruction of phylogenetic trees, Mol. Bio. Evol., 4 (1987) 406–425.

    Google Scholar 

  34. M. Salemi, M. Leiws, J. Egan, W. Hall, J. Desmyter, A.-M. Vandamme, Different population dynamics of human T cell lymphotropic virus type II in intrevenous drug users compared with endemically infected tribes, PNAS, 96 (1999) 13253–13258.

    Article  Google Scholar 

  35. D. Sanko., D. Bryant, M. Denault, B.F. Lang, and G. Burger, Early eukaryote evolution based on mitochondrial gene order breakpoints. J. of Comp. Biology, 7(3) (2000) 521–536.

    Article  Google Scholar 

  36. S. Sattath, A. Tversky., Additive similarity trees, Psychometrika, 42 (3) 319–345.

    Google Scholar 

  37. R.R. Sokal and C.D. Michener. A statistical method for evaluating systematic relationships. Univ. Kansas Science Bull., 38 (1958) 1409–1438.

    Google Scholar 

  38. K. Strimmer, C. Wiuf, V. Moulton, Recombination analysis using directed graphical models, Molecular Biology and Evolution, 18 (2001) 97–99.

    Google Scholar 

  39. D. Swofford, G. J. Olsen, P. J. Waddell and D. M. Hillis. Phylogenetic Inference, in Molecular Systematics 2nd Edition, Hillis, D.M. and Moritz, C. and Mable, B.K. (eds). Sinauer (1996) 407–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bryant, D., Moulton, V. (2002). NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics