Abstract
Combining image segmentation based on statistical classification with a geometric prior has been shown to significantly increase robustness and reproducibility. Using a probabilistic geometric model of sought structures and image registration serves both initialization of probability density functions and definition of spatial constraints. A strong spatial prior, however, prevents segmentation of structures that are not part of the model. In practical applications, we encounter either the presentation of new objects that cannot be modeled with a spatial prior or regional intensity changes of existing structures not explained by the model.
Our driving application is the segmentation of brain tissue and tumors from three-dimensional magnetic resonance imaging (MRI). Our goal is a high-quality segmentation of healthy tissue and a precise delineation of tumor boundaries. We present an extension to an existing expectation maximization (EM) segmentation algorithm that modifies a probabilistic brain atlas with an individual subject’s information about tumor location obtained from subtraction of post- and pre-contrast MRI. The new method handles various types of pathology, space-occupying mass tumors and infiltrating changes like edema. Preliminary results on five cases presenting tumor types with very different characteristics demonstrate the potential of the new technique for clinical routine use for planning and monitoring in neurosurgery, radiation oncology, and radiology.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Just, M., Thelen, M.: Tissue characterization with T1, T2, and proton density values: Results in 160 patients with brain tumors. Radiology (1988) 779–785
Gerig, G., Martin, J., Kikinis, R., Kubler, O., Shenton, M., Jolesz, F.: Automating segmentation of dual-echo MR head data. In: IPMI. Volume 511. (1991) 175–185
Velthuizen, R., Clarke, L., Phuphianich, S., Hall, L., Bensaid, A., Arrington, J., Greenberg, H., Siblinger, M.: Unsupervised measurement of brain tumor volume on MR images. JMRI (1995) 594–605
Vinitski, S., Gonzales, C., Mohamed, F., Iwanaga, T., Knobler, R., Khalili, K., Mack, J.: Improved intracranial lesion characterization by tissue segmentation based on a 3D feature map. Mag Re Med (1997) 457–469
Kamber, M., Shingal, R., Collins, D., Francis, D., Evans, A.: Model-based, 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE-TMI (1995) 442–453
Zijdenbos, A., Forghani, R., Evans, A.: Automatic quantification of MS lesions in 3d MRI brain data sets: Validation of INSECT. In: MICCAI. Volume 1496 of LNCS., Springer (1998) 439–448
Vehkomaki, T., Gerig, G., Szekely, G.: A user-guided tool for efficient segmentation of medical image data. In: CVRMED. Volume 1205 of LNCS. (1997) 685–694
Gibbs, P., Buckley, D., Blackband, S., Horsman, A.: Tumour volume determination from MR images by morphological segmentation. Phys Med Biol (1996) 2437–2446
Kjaer, L., Ring, P., Thomson, C., Henriksen, O.: Texture analysis in quantitative MR imaging: Tissue characterization of normal brain and intracranial tumors at 1.5 T. Acta Radiologic (1995)
Warfield, S., Dengler, J., Zaers, J., Guttman, C., Wells, W., Ettinger, G., Hiller, J., Kikinis, R.: Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions. Journal of Image Guided Surgery 1 (1995) 326–338
Warfield, S., Kaus, M., Jolesz, F., Kikinis, R.: Adaptive template moderated spatially varying statistical classification. In: MICCAI. Volume 1496 of LNCS., Springer (1998) 431–438
Wells, W.M., Kikinis, R., Grimson, W.E.L., Jolesz, F.: Adaptive segmentation of MRI data. IEEE TMI 18(1996) 429–442
van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE TMI 18 (1999) 897–908
van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE TMI 18 (1999) 885–896
van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20 (2001) 677–688
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Seutens, P.: Multimodality image registration by maximization of mutual information. IEEE-TMI (1997) 187–198
Ho, S., Bullitt, E., Gerig, G.: Level set evolution with region competition: Automatic 3-D segmentation of brain tumors. to appear in Proc. ICPR 2002 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moon, N., Bullitt, E., van Leemput, K., Gerig, G. (2002). Automatic Brain and Tumor Segmentation. In: Dohi, T., Kikinis, R. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. MICCAI 2002. Lecture Notes in Computer Science, vol 2488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45786-0_46
Download citation
DOI: https://doi.org/10.1007/3-540-45786-0_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44224-0
Online ISBN: 978-3-540-45786-2
eBook Packages: Springer Book Archive