Abstract
Many varieties of regular languages have characterizations in terms of forbidden-patterns of their accepting finite automata. The use of patterns while inferring languages belonging to those families through the RPNI-Lang algorithm help to avoid overgeneralization in the same way as negative samples do. The aim of this paper is to describe and prove the convergence of a modification of the RPNI-Lang algorithm that we call FCRPNI. Preliminary experiments done seem to show that the convergence when we use FCRPNI for some subfamilies of regular languages is achieved faster than when we use just the RPNI algorithm.
Work partially supported by the Spanish CICYT under contract TIC2000-1153
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D. Inductive Inference of Formal Languages from Positive Data. Inform and Control, pp. 117–135 (1980).
Angluin, D. Inference of Reversible Languages. Journal of the ACM, Vol 29-3. pp. 741–765 (1982).
Carrasco, R. and Oncina, J. Learning Stochastic Regular Grammars by means of a State Merging Method. In Grammatical Inference and Applications. R. Carrasco and J. Oncina (Eds.). LNAI 862. Springer-Verlag, pp. 139–152 (1994).
Cohen, J. Perrin D. and Pin J-E. On the expressive power of temporal logic. Journal of computer and System Sciences 46, pp 271–294 (1993).
Coste, F. and Nicolas J. How considering Incompatible State Mergings May Reduce the DFA induction Search Tree. In Grammatical Inference. V. Honavar and G. Slutzki (Eds.) LNAI 1433. Springer-Verlag, pp 199–210 (1998).
Eilenberg, S. Automata, Languages and Machines, Vol A and B (Academic Press, 1976)
García, P. Cano, A. and Ruiz, J. A comparative study of two algorithms for automata identification. In Grammatical Inference: Algorithms and Applications. A.L. Oliveira (Ed.) LNAI 189. Springer-Verlag, pp. 115–126 (2000).
García P. and Vidal E. Inference of k-Testable languages in the Stric Sense and Applications to Syntactic Pattern Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 12/9, pp 920–925 (1990).
Glaßer, C. Forbidden-Patterns and Word Extensions for Concatenation Hierarchies. Ph dissertation, Würzburg University, Germany, 2001.
Gold, M. Complexity of Automaton Identification from Given Data. Information and Control 37, pp 302–320 (1978).
de la Higuera, C. Oncina, J. and Vidal, E. Data dependant vs data independant algorithms. In Grammatical Inference: Learning Syntax from Sentences. L. Miclet and C. de la Higuera (Eds.). LNAI 1147. Springer-Verlag, pp. 313–325 (1996).
Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979).
Juillé, H. and Pollack J. A Stochastic Search Approach to Grammar Induction. In Grammatical Inference. V. Honavar and G. Slutzki (Eds.) LNAI 1433. Springer-Verlag, pp 126–137 (1998).
Lang, K. J. Random DFA’s can be Approximately Learned from Sparse Uniform Examples. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp 45–52. (1992).
Lang, K.J., Pearlmutter B.A. and Price R.A. Results on the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm In Grammatical Inference. V. Honavar and G. Slutzki (Eds.) LNAI 1433. Springer-Verlag, pp 1–12 (1998).
Oncina, J. and García, P. Inferring Regular Languages in Polynomial Updated Time. In Pattern Recognition and Image Analysys. Pérez de la Blanca, Sanfeliú and Vidal (Eds.) World Scientific. (1992).
Pin, J. Varieties of formal languages. Plenum. (1986).
Ruiz, J. and García, P. Learning k-piecewise testable languages from positive data. In Grammatical Inference: Learning Syntax from Sentences. L. Miclet and C. de la Higuera (Eds.). LNAI 1147. Springer-Verlag, pp. 203–210 (1996).
Schmitz, H. The Forbidden-Pattern approach to Concatenation Hierarchies. Ph dissertation, Würzburg University, Germany, 2001.
Stolcke, A. and Omohundro, S. Inducing Probabilistic Grammars by Bayesian Model Merging. In Grammatical Inference and Applications. R. Carrasco and J. Oncina (Eds.). LNAI 862. Springer-Verlag, pp. 106–118 (1994).
Trakhtenbrot B. and Barzdin Ya. Finite Automata: Behavior and Synthesis. North Holland Publishing Company. (1973).
Vidal, E. and Llorens, S. Using Knowledge to improve N-Gram Language Modelling through the MGGI Methodology. In Grammatical Inference: Learning Syntax from Sentences. L. Miclet and C. de la Higuera (Eds.). LNAI 1147. Springer-Verlag, pp. 179–190 (1996).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cano, A., Ruiz, J., García, P. (2002). Inferring Subclasses of Regular Languages Faster Using RPNI and Forbidden Configurations. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2002. Lecture Notes in Computer Science(), vol 2484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45790-9_3
Download citation
DOI: https://doi.org/10.1007/3-540-45790-9_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44239-4
Online ISBN: 978-3-540-45790-9
eBook Packages: Springer Book Archive