Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Foundations of Designing Computational Knowledge Discovery Processes

  • Chapter
  • First Online:
Progress in Discovery Science

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2281))

  • 509 Accesses

Abstract

We propose a new paradigm for computational knowledge discovery, called VOX (View Oriented eXploration). Recent research has revealed that actual discoveries cannot be achieved using only component technologies such as machine learning theory or data mining algorithms. Recognizing how the computer can assist the actual discovery tasks, we developed a solution to this problem. Our aim is to construct a principle of computational knowledge discovery, which will be used for building actual applications or discovery systems, and for accelerating such entire processes. VOX is a mathematical abstraction of knowledge discovery processes, and provides a unified description method for the discovery processes. We present advantages obtained by using VOX. Through an actual computational experiment, we show the usefulness of this new paradigm. We also designed a programming language based on this concept. The language is called VML (View Modeling Language), which is defined as an extension of a functional language ML. Finally, we present the future plans and directions in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Bannai, Y. Tamada, O. Maruyama, and S. Miyano. VML: A view modeling language for computational knowledge discovery. In Discovery Science, Lecture Notes in Artificial Intelligence, 2001. To appear.

    Google Scholar 

  2. H. Bannai, Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano. Extensive feature detection of n-terminal protein sorting signals. Bioinformatics, 2001. To appear.

    Google Scholar 

  3. H. Bannai, Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano. Views: Fundamental building blocks in the process of knowledge discovery. In Proceedings of the 14th International FLAIRS Conference, pages 233–238. AAAI Press, 2001.

    Google Scholar 

  4. E. Bloedorn and R. S. Michalski. Data-driven constructive induction. IEEE Intelligent Systems, pages 30–37, March/April 1998.

    Google Scholar 

  5. B. D. Bruce. Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol., 10:440–447, 2000.

    Article  Google Scholar 

  6. M. G. Claros and P. Vincens. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem., 241(3):779–786, November 1996.

    Article  Google Scholar 

  7. O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 300(4):1005–1016, July 2000.

    Article  Google Scholar 

  8. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in databases. AIMagazine, 17(3):37–54, 1996.

    Google Scholar 

  9. S. Kawashima and M. Kanehisa. AAindex: Amino Acid index database. Nucleic Acids Res., 28(1):374, 2000.

    Article  Google Scholar 

  10. P. Langley. The computer-aided discovery of scientific knowledge. In Lecture Notes in Artificial Intelligence, volume 1532, pages 25–39, 1998.

    Google Scholar 

  11. O. Maruyama and S. Miyano. Design aspects of discovery systems. IEICE Transactions on Information and Systems, E83-D:61–70, 2000.

    Google Scholar 

  12. O. Maruyama, T. Uchida, T. Shoudai, and S. Miyano. Toward genomic hypothesis creator: View designer for discovery. In Discovery Science, volume 1532 of Lecture Notes in Artificial Intelligence, pages 105–116, 1998.

    Google Scholar 

  13. O. Maruyama, T. Uchida, K. L. Sim, and S. Miyano. Designing views in HypothesisCreator: System for assisting in discovery. In Discovery Science, volume 1721 of Lecture Notes in Artificial Intelligence, pages 115–127, 1999.

    Google Scholar 

  14. B. W. Matthews. Comparison of predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta, 405:442–451, 1975.

    Google Scholar 

  15. H. Motoda. Fascinated by explicit understanding. J. Japanese Society for Artificial Intelligence, 14:615–625, 1999.

    Google Scholar 

  16. K. Nakai. Protein sorting signals and prediction of subcellular localization. In P. Bork, editor, Analysis of Amino Acid Sequences, volume 54 of Advances in Protein Chemistry, pages 277–344. Academic Press, San Diego, 2000.

    Chapter  Google Scholar 

  17. K. Nakai and M. Kanehisa. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 14:897–911, 1992.

    Article  Google Scholar 

  18. S. Shimozono. Alphabet indexing for approximating features of symbols. Theor. Comput. Sci., 210:245–260, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa. Knowledge acquisition from amino acid sequences by machine learning system BONSAI. J. IPS Japan, 35(10):2009–2017, 1994.

    Google Scholar 

  20. E. Sumii and H. Bannai. VMlambda: A functional calculus for scientific discovery. http://www.yl.is.s.u-tokyo.ac.jp/~sumii/pub/, 2001.

  21. G. von Heijne. The signal peptide. J. Membr. Biol., 115:195–201, 1990.

    Article  Google Scholar 

  22. S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM, 35:83–91, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tamada, Y., Bannai, H., Maruyama, O., Miyano, S. (2002). Foundations of Designing Computational Knowledge Discovery Processes. In: Arikawa, S., Shinohara, A. (eds) Progress in Discovery Science. Lecture Notes in Computer Science(), vol 2281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45884-0_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-45884-0_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43338-5

  • Online ISBN: 978-3-540-45884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics