Abstract
We extend the informatic derivative to compact elements in domains. This allows one to quantitatively analyze processes which manipulate both continuous and discrete data in a uniform manner.
Chapter PDF
Similar content being viewed by others
References
S. Abramsky and A. Jung, Domain theory. In S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, vol. III. Oxford University Press, 1994.
K. Martin, A foundation for computation. Ph.D. Thesis, Department of Mathematics, Tulane University, 2000. http://web.comlab.ox.ac.uk/oucl/work/keye.martin
K. Martin, A principle of induction. Lecture Notes in Computer Science, vol. 2142, Springer-Verlag, 2001.
K. Martin, A renee equation for algorithmic complexity. Lecture Notes in Computer Science, vol. 2215, Springer-Verlag, 2001.
K. Martin, The measurement process in domain theory. Proceedings of the 27th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 1853, Springer-Verlag, 2000.
K. Martin, Powerdomains and zero finding. Electronic Notes in Theoretical Computer Science, vol 59.3, 2001, to appear.
K. Martin, Unique fixed points in domain theory. Proceedings of MFPS XVII, Electronic Notes in Theoretical Computer Science, vol. 45, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martin, K. (2002). The Informatic Derivative at a Compact Element. In: Nielsen, M., Engberg, U. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2002. Lecture Notes in Computer Science, vol 2303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45931-6_22
Download citation
DOI: https://doi.org/10.1007/3-540-45931-6_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43366-8
Online ISBN: 978-3-540-45931-6
eBook Packages: Springer Book Archive