Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Improved Q-Learning Algorithm Using Synthetic Pheromones

  • Conference paper
  • First Online:
From Theory to Practice in Multi-Agent Systems (CEEMAS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2296))

Abstract

In this paper we propose an algorithm for multi-agent Q-learning. The algorithm is inspired by the natural behaviour of ants, which deposit pheromone in the environment to communicate. The benefit besides simulating ant behaviour in a colony is to design complex multi-agent systems. Complex behaviour can emerge from relatively simple interacting agents. The proposed Q-learning update equation includes a belief factor. The belief factor reflects the confidence the agent has in the pheromone detected in its environment. Agents communicate implicitly to co-ordinate and co-operate in learning to solve a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Anderson, P.G. Blacwell, and C. Cannings. Simulating ants that forage by expectation. In Proc. 4Th Conf. on Artificial Life, pages 531–538, 1997.

    Google Scholar 

  2. R. Beckers, J. L. Deneubourg, S. Goss, and J. M. Pasteels. Collective decision making through food recruitment. Ins. Soc., 37:258–267, 1990.

    Article  Google Scholar 

  3. R. Beckers, J.L. Deneubourg, and S. Goss. Trails and u-turns in the selection of the shortest path by the ant lasius niger. Journal of Theoretical Biology, 159:397–4151, 1992.

    Article  Google Scholar 

  4. D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

    Google Scholar 

  5. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence, From Natural to Artificial Systems. Oxford University Press, 1999.

    Google Scholar 

  6. M. C. Cammaerts-Tricot. Piste et pheromone attraction chez la fourmi myrmica ruba. Journal of Computational Physiology, 88:373–382, 1974.

    Article  Google Scholar 

  7. G. Di Caro and M. Dorigo. Antnet: a mobile agents approach to adaptive routing.

    Google Scholar 

  8. A. Colorni, M. Dorigo, and V. Maniezzo. Ant system for job-shop scheduling. Belgian Journal of OR, statistics and computer science, 34:39–53, 1993.

    Google Scholar 

  9. A. Colorni, M. Dorigo, and G. Theraulaz. Distributed optimzation by ant colonies. In Proceedings First European Conf. on Artificial Life, pages 134–142, 1991.

    Google Scholar 

  10. J.L. Deneubourg, R. Beckers, and S. Goss. Trails and u-turns in the selection of a path by the ant lasius niger. Journal of Theoretical Biology, 159:397–415, 1992.

    Article  Google Scholar 

  11. J.L. Deneubourg and S. Goss. Collective patterns and decision making. Ethol. Ecol. and Evol., 1:295–311, 1993.

    Google Scholar 

  12. M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to the travelling salesman problem. IEEE Trans. on Evol. Comp., 1:53–66, 1997.

    Article  Google Scholar 

  13. M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of cooperatin agents. IEEE Trans. on Systems, Man, and Cybernetics, 26:1–13, 1996.

    Google Scholar 

  14. M. Kisiel-Dorohinicki E. Nawarecki, G. Dobrowolski. Organisations in the particular class of multi-agent systems. In in this volume, 2001.

    Google Scholar 

  15. L. M. Gambardella and M. Dorigo. Ant-q: A reinforcement learning approach to the traveling salesman problem. In Proc. 12Th ICML, pages 252–260, 1995.

    Google Scholar 

  16. L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the qap. Journal of Operational Research society, 1998.

    Google Scholar 

  17. S. Goss, S. Aron, J.L. Deneubourg, and J. M. Pasteels. Self-organized shorcuts in the argentine ants. Naturwissenschaften, pages 579–581, 1989.

    Google Scholar 

  18. L. R. Leerink, S. R. Schultz, and M. A. Jabri. A reinforcement learning exploration strategy based on ant foraging mechanisms. In Proc. 6Th Australian Conference on Neural Nets, 1995.

    Google Scholar 

  19. J-P. Sansonnet N. Sabouret. Learning collective behaviour from local interaction. In in this volume, 2001.

    Google Scholar 

  20. J.G. Ollason. Learning to forage-optimally? Theoretical Population Biology, 18:44–56, 1980.

    Article  MathSciNet  Google Scholar 

  21. J.G. Ollason. Learning to forage in a regenerating patchy environment: can it fail to be optimal? Theoretical Population Biology, 31:13–32, 1987.

    Article  MATH  Google Scholar 

  22. H. Van Dyke Parunak and S. Brueckner. Ant-like missionnaries and cannibals: Synthetic pheromones for distributed motion control. In Proc. of ICMAS’00, 2000.

    Google Scholar 

  23. H. Van Dyke Parunak, S. Brueckner, J. Sauter, and J. Posdamer. Mechanisms and military applications for synthetic pheromones. In Proc. 5Th International Conference Autonomous Agents, Montreal, Canada, 2001.

    Google Scholar 

  24. L. Sheremetov R. Romero Cortes. Model of cooperation in multi-agent systems with fuzzy coalitions. In in this volume, 2001.

    Google Scholar 

  25. R. S. Sutton and A.G. Barto. Reinforcement Learning. MITPress, 1998.

    Google Scholar 

  26. Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the Tenth International Conference on Machine Learning, pages 330–337, 1993.

    Google Scholar 

  27. R. T. Vaughan, K. Stoy, G. S. Sukhatme, and M. J. Mataric. Whistling in the dark: Cooperative trail following in uncertain localization space. In Proc. 4Th International Conference on Autonomous Agents, Barcelona, Spain, 2000.

    Google Scholar 

  28. C. J. C. H. Watkins. Learning with delayed rewards. PhD thesis, University of Cambridge, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monekosso, N., Remagnino, P., Szarowicz, A. (2002). An Improved Q-Learning Algorithm Using Synthetic Pheromones. In: Dunin-Keplicz, B., Nawarecki, E. (eds) From Theory to Practice in Multi-Agent Systems. CEEMAS 2001. Lecture Notes in Computer Science(), vol 2296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45941-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45941-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43370-5

  • Online ISBN: 978-3-540-45941-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics