Abstract
In this paper some new ideas, problems and results on patterns are proposed. In particular, motivated by questions concerning avoidability, we first study the set of binary patterns that can occur in one infinite binary word, comparing it with the set of factors of the word. This suggests a classification of infinite words in terms of the “difference” between the set of its patterns and the set of its factors. The fact that each factor in an infinite word can give rise to several distinct patterns leads to study the set of patterns of a single finite word. This set, endowed with a natural order relation, defines a poset: we investigate the relationships between the structure of such a poset and the combinatorial properties of the word. Finally we show that the set of patterns of the words in a regular language is a regular language too.
Partially supported by MURST projects: Bioinformatica e Ricerca Genomica
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Allouche, J.P.: Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1 (1994) 133–143
Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21 (1980) 46–62
Béal, M.-P., Mignosi, F. Restivo, A., Sciortino, M.: ForbiddenWords in Symbolic Dynamics. Advances in Appl. Math. 25 (2000) 163–193
Bean, D.R., Ehrenfeucht, A., McNulty, G.F.: Avoidable patterns in strings of symbols. Pacific J. Math. 85 (1979) 261–294
Berstel, J., Séébold, P.: Sturmian Words. In: Algebraic Combinatorics on Words, chapter 2, M. Lothaire (Ed.) Cambridge University Press, 2001
Cassaigne, J.: Unavoidable binary patterns. Acta Informatica 30 (1993) 385–395
Cassaigne, J.: Unavoidable patterns. In: Algebraic Combinatorics on Words, chapter 3, M. Lothaire (Ed.) Cambridge University Press, 2001
Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Handbook of Formal Languages, volume 1, chapter 6, 329–438, G. Rozenberg, A. Salomaa (Eds.) Springer, Berlin, 1997
Guaiana, D.: On the binary patterns of the Thue-Morse infinite word. Internal Report, University of Palermo, 1996
Mateescu, A., Salomaa, A.: Aspects of Classical Language Theory. In: Handbook of Formal Languages, volume 1, chapter 4, 175–251, G. Rozenberg, A. Salomaa (Eds.), Springer, Berlin, 1997
Mignosi, F.: On the number of factors of Sturmian words. Theoret. Comput. Sci. 82 (1991) 71–84
Mignosi, F., Pirillo, G.: Repetitions in the Fibonacci infinite word. RAIRO Theoretical Informatics and Applications 26(3) (1992) 199–204
Mignosi, F., Restivo, A., Sciortino, M.: Words and Forbidden Factors. Theoret. Comput. Sci. 273(1–2) (2001) 99–117
Mitrana, V.: Patterns and Languages: An overview. Grammars 2 (1999) 149–173
Restivo, A., Salemi, S.: Binary Patterns in Infinite BinaryWords. Lecture Notes in Computer Science (to appear)
Roth, P.: Every binary pattern of length six is avoidable on the two-letter alphabet Acta Informatica 29 (1992) 95–107
Thue, A.: Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 7 1906
Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 12 1912
Zimin, A.I.: Blocking sets of terms. Math. USSR Sb 47 (1984) 353–364
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Restivo, A., Salemi, S. (2002). Words and Patterns. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds) Developments in Language Theory. DLT 2001. Lecture Notes in Computer Science, vol 2295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46011-X_9
Download citation
DOI: https://doi.org/10.1007/3-540-46011-X_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43453-5
Online ISBN: 978-3-540-46011-4
eBook Packages: Springer Book Archive