Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

EM-Based Radial Basis Function Training with Partial Information

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2002 (ICANN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2415))

Included in the following conference series:

Abstract

This work presents an EM approach for nonlinear regression with incomplete data. Radial Basis Function (RBF) Neural Networks are employed since their architecture is appropriate for an efficient parameter estimation. The training algorithm expectation (E) step takes into account the censorship over the data, and the maximization (M) step can be implemented in several ways. The results guarantee the convergence of the algorithm in the GEM (Generalized EM) framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dempster, A. P., Laird N. M., Rubin, D. Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society, Vol. B 39, 1977, pp. 1–38.

    MathSciNet  Google Scholar 

  2. Feder, M., Weinstein, E.: Parameter Estimation of Superimposed Signals Using the EM Algorithm, IEEE Trans. Acoustics, Speech, and Signal Processing vol. 36, NO. 4, 1988, pp. 477–489.

    Article  MATH  Google Scholar 

  3. Ghahramani, Z., Roweis, S.: Learning Nonlinear Dynamical Systems using a EM Algorithm., Neural Information Processing Systems 11 (NIPS’98), pp. 431–437.

    Google Scholar 

  4. Haykin, S.: Neural Networks, A Comprehensive Foundation. 2nd ed. Prentice Hall International In.c, 1999.

    Google Scholar 

  5. Lázaro, M., Santamaría, I., Pantaleón, C.: Accelerating the Convergence of EM-Based Training Algorithms for RBF Networks. IWANN 2001, Lecture Notes in Computer Science 2084, 2001, pp. 347–354.

    Google Scholar 

  6. Little, R. J. A., Rubin, D. Statistical analysis with missing data, Wiley, 1987.

    Google Scholar 

  7. McLachlan, G. J., Krishnan, T.: The EM Algorithm and Extensions, Wiley, 1997.

    Google Scholar 

  8. Orchard, T., Woodbury, M. A.: A missing information principle: Theory and applications. Proceeding of the Sixth Berkeley Symposium on Mathematical Statistics, Vol. 1, 1972, pp. 697–715.

    MathSciNet  Google Scholar 

  9. Rivero, C.: Sobre Aproximaciones Estocásticas aplicadas a problemas de Inferencia Estadística con información parcial, Tesis Doctoral, Universidad Complutense de Madrid, 2001. (In spanish).

    Google Scholar 

  10. Roweis, S., Ghahramani, Z.: A Unifying Review of Linear Gaussian Models, Neural Computation, Vol. 11(2), 1999, pp. 305–345.

    Article  Google Scholar 

  11. M. A. Tanner, M. A.: Tools for Statistical Inference. Observed Data and Data augmentation Methods. Springer, 1993.

    Google Scholar 

  12. Zufiria, P. J., Castillo, A., Rivero, C.: Radial Basis Function Training for Nonlinear Regression with Censored Data, First International NAISO Congress on Neuro Fuzzy Technologies, 100027-01-PZ-071, p. 80, 7 pp., 2002. ICSC NAISO Academic Press Canada/The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zufiria, P.J., Rivero, C. (2002). EM-Based Radial Basis Function Training with Partial Information. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_100

Download citation

  • DOI: https://doi.org/10.1007/3-540-46084-5_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44074-1

  • Online ISBN: 978-3-540-46084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics