Abstract
This work presents an EM approach for nonlinear regression with incomplete data. Radial Basis Function (RBF) Neural Networks are employed since their architecture is appropriate for an efficient parameter estimation. The training algorithm expectation (E) step takes into account the censorship over the data, and the maximization (M) step can be implemented in several ways. The results guarantee the convergence of the algorithm in the GEM (Generalized EM) framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dempster, A. P., Laird N. M., Rubin, D. Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society, Vol. B 39, 1977, pp. 1–38.
Feder, M., Weinstein, E.: Parameter Estimation of Superimposed Signals Using the EM Algorithm, IEEE Trans. Acoustics, Speech, and Signal Processing vol. 36, NO. 4, 1988, pp. 477–489.
Ghahramani, Z., Roweis, S.: Learning Nonlinear Dynamical Systems using a EM Algorithm., Neural Information Processing Systems 11 (NIPS’98), pp. 431–437.
Haykin, S.: Neural Networks, A Comprehensive Foundation. 2nd ed. Prentice Hall International In.c, 1999.
Lázaro, M., Santamaría, I., Pantaleón, C.: Accelerating the Convergence of EM-Based Training Algorithms for RBF Networks. IWANN 2001, Lecture Notes in Computer Science 2084, 2001, pp. 347–354.
Little, R. J. A., Rubin, D. Statistical analysis with missing data, Wiley, 1987.
McLachlan, G. J., Krishnan, T.: The EM Algorithm and Extensions, Wiley, 1997.
Orchard, T., Woodbury, M. A.: A missing information principle: Theory and applications. Proceeding of the Sixth Berkeley Symposium on Mathematical Statistics, Vol. 1, 1972, pp. 697–715.
Rivero, C.: Sobre Aproximaciones Estocásticas aplicadas a problemas de Inferencia Estadística con información parcial, Tesis Doctoral, Universidad Complutense de Madrid, 2001. (In spanish).
Roweis, S., Ghahramani, Z.: A Unifying Review of Linear Gaussian Models, Neural Computation, Vol. 11(2), 1999, pp. 305–345.
M. A. Tanner, M. A.: Tools for Statistical Inference. Observed Data and Data augmentation Methods. Springer, 1993.
Zufiria, P. J., Castillo, A., Rivero, C.: Radial Basis Function Training for Nonlinear Regression with Censored Data, First International NAISO Congress on Neuro Fuzzy Technologies, 100027-01-PZ-071, p. 80, 7 pp., 2002. ICSC NAISO Academic Press Canada/The Netherlands.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zufiria, P.J., Rivero, C. (2002). EM-Based Radial Basis Function Training with Partial Information. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_100
Download citation
DOI: https://doi.org/10.1007/3-540-46084-5_100
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44074-1
Online ISBN: 978-3-540-46084-8
eBook Packages: Springer Book Archive