Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Differential Decorrelation: A Natural Gradient Algorithm

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2002 (ICANN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2415))

Included in the following conference series:

Abstract

In this paper, I introduce a concept of differential decorrelation which finds a linear mapping that minimizes the concurrent change of variables. Motivated by the differential anti-Hebbian rule [1], I develop a natural gradient algorithm for differential decorrelation and present its local stability analysis. The algorithm is successfully applied to the task of nonstationary source separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, S.: Differential Hebbian-type learning algorithms for decorrelation and independent component analysis. Electronics Letters 34 (1998) 900–901

    Article  Google Scholar 

  2. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  3. Földiák, P.: Adaptive network for optimal linear feature extraction. In: Proc. Int. Joint Conf. Neural Networks. (1989) 401–405

    Google Scholar 

  4. Kosko, B.: Differential Hebbian learning. In: Proc. American Institute of Physics: Neural Networks for Computing. (1986) 277–282

    Google Scholar 

  5. Amari, S.: Natura1 gradient works efficiently in learning. Neural Computation 10 (1998) 251–276

    Article  Google Scholar 

  6. Choi, S., Cichocki, A., Amari, S.: Equivariant nonstationary source separation. Neural Networks 15 (2002) 121–130

    Article  Google Scholar 

  7. Amari, S., Chen, T.P., Cichocki, A.: Stability analysis of learning algorithms for blind source separation. Neural Networks 10 (1997) 1345–1351

    Article  Google Scholar 

  8. Choi, S., Cichocki, A., Belouchrani, A.: Second order nonstationary source separation. Journal of VLSI Signal Processing (2002) to appear.

    Google Scholar 

  9. Matsuoka, K., Ohya, M., Kawamoto, M.: A neural net for blind Separation of nonstationary signals. Neural Networks 8 (1995) 411–419

    Article  Google Scholar 

  10. Choi, S., Cichocki, A., Deville, Y.: Differential decorrelation for nonstationary source separation. In: Proc. ICA, San Diego, CA (2001)

    Google Scholar 

  11. Deville, Y., Benali, M.: Differential source separation: Concept and application to a criterion based on differential normalized kurtosis. In: Proc. EUSIPCO. (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, S. (2002). Adaptive Differential Decorrelation: A Natural Gradient Algorithm. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_189

Download citation

  • DOI: https://doi.org/10.1007/3-540-46084-5_189

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44074-1

  • Online ISBN: 978-3-540-46084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics