Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Instance Retraction

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2002)

Abstract

Instance retraction is a difficult problem for concept learning by version spaces. In this paper, two new version-space representations are introduced: instance-based maximal boundary sets and instancebased minimal boundary sets. They are correct representations for the class of admissible concept languages and are efficiently computable. Compared to other representations, they are the most efficient practical version-space representations for instance retraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haussler, D.: Quantifying Inductive Bias: AI Learning Algorithms and Valiants Learning Framework. Artificial Intelligence 36 (1988) 177–221

    Article  MATH  MathSciNet  Google Scholar 

  2. Hirsh, H.: Polynomial-Time Learning with Version Spaces. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (1992) 117–122

    Google Scholar 

  3. Hirsh, H., Mishra, N., Pitt, L.: Version Spaces without Boundary Sets. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (1997) 491–496

    Google Scholar 

  4. Idemstam-Almquist, P.: Demand Networks: An Alternative Representation of Version Spaces. Master’s Thesis, Department of Computer Science and Systems Sciences, Stockholm University, Stockholm, Sweden (1990)

    Google Scholar 

  5. Mitchell, T.: Machine Learning. McGraw-Hill, New York, NY (1997)

    MATH  Google Scholar 

  6. Sablon, G., DeRaedt, L., Bruynooghe, L.: Iterative Versionspaces. Artificial Intelligence 69 (1994) 393–410

    Article  MATH  Google Scholar 

  7. Smirnov, E.N.: Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets. Ph.D. Thesis, Department of Computer Science, Universiteit Maastricht, Maastricht, The Netherlands (2001)

    Google Scholar 

  8. Smirnov, E.N., Braspenning, P.J.: Version Space Learning with Instance-Based Boundary Sets. In: Proceedings of The Thirteenth European Conference on Artificial Intelligence. Jonh Willey and Sons, Chichester, UK (1998) 460–464

    Google Scholar 

  9. Smirnov, E.N., Sprinkhuizen-Kuyper, I.G., van den Herik, H.J.: Further Developments in Efficient Instance Retraction. Technical Report CS 02-02, Department of Computer Science, Universiteit Maastricht, Maastricht, The Netherlands (2002)

    Google Scholar 

  10. Smith, B.D., Rosenbloom, P.S.: Incremental Non-Backtracking Focusing: A Polynomially Bounded Algorithm for Version Spaces. In: Proceedings of the Eight National Conference on Artificial Intelligence, MIT Press, MA (1990) 848–853

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smirnov, E.N., Sprinkhuizen-Kuyper, I.G., van den Herik, H.J. (2002). Efficient Instance Retraction. In: Scott, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2002. Lecture Notes in Computer Science(), vol 2443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46148-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-46148-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44127-4

  • Online ISBN: 978-3-540-46148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics