Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automated Theorem Proving in First-Order Logic Modulo: On the Difference between Type Theory and Set Theory

  • Conference paper
  • First Online:
Automated Deduction in Classical and Non-Classical Logics (FTP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1761))

Included in the following conference series:

Abstract

Resolution modulo is a first-order theorem proving method that can be applied both to first-order presentations of simple type theory (also called higher-order logic) and to set theory. When it is applied to some first-order presentations of type theory, it simulates exactly higher-order resolution. In this note, we compare how it behaves on type theory and on set theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.B. Andrews. Resolution in type theory. The Journal of Symbolic Logic, 36,3 (1971), pp. 414–432.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.B. Andrews, An introduction to mathematical logic and type theory: to truth through proof, Academic Press (1986).

    Google Scholar 

  3. P.B. Andrews, D.A. Miller, E. Longini Cohen, and F. Pfenning, Automating higher-order logic, W.W. Bledsoe and D.W. Loveland (Eds.), Automated theorem proving: after 25 years, Contemporary Mathematics Series 29, American Mathematical Society (1984), pp. 169–192.

    Google Scholar 

  4. S.C. Bailin, A normalization theorem for set theory, The Journal of Symbolic Logic, 53,3 (1988), pp. 673–695.

    Article  MATH  MathSciNet  Google Scholar 

  5. S.C. Bailin, A λ-unifiability test for set theory, Journal of Automated Reasoning, 4 (1988), pp. 269–286.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Church, A formulation of the simple theory of types, The Journal of Symbolic Logic, 5 (1940), pp. 56–68.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Davis, Invited commentary to [28], A.J.H. Morrell (Ed.) Proceedings of the International Federation for Information Processing Congress, 1968, North Holland (1969) pp. 67–68.

    Google Scholar 

  8. D.J. Dougherty, Higher-order unification via combinators, Theoretical Computer Science, 114 (1993), pp. 273–298.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Dowek, Lambda-calculus, combinators and the comprehension scheme, M. Dezani-Ciancaglini and G. Plotkin (Eds.), Typed Lambda Calculi and Applications, Lecture notes in computer science 902, Springer-Verlag (1995), pp. 154–170. Rapport de Recherche 2565, INRIA (1995).

    Chapter  Google Scholar 

  10. G. Dowek, Proof normalization for a first-order formulation of higher-order logic, E.L. Gunter and A. Felty (Eds.), Theorem Proving in Higher-order Logics, Lecture notes in computer science 1275, Springer-Verlag (1997), pp. 105–119. Rapport de Recherche 3383, INRIA (1998).

    Chapter  Google Scholar 

  11. G. Dowek, Th. Hardin, and C. Kirchner, Theorem proving modulo, Rapport de Recherche 3400, INRIA (1998).

    Google Scholar 

  12. G. Dowek, Th. Hardin, and C. Kirchner, HOL-λσ: an intentional first-order expression of higher-order logic, to appear in Rewriting Techniques and Applications (1999). Rapport de Recherche 3556, INRIA (1998).

    Google Scholar 

  13. G. Dowek and B. Werner, Proof normalization modulo, Rapport de Recherche 3542, INRIA (1998).

    Google Scholar 

  14. J. Ekman, Normal proofs in set theory, Doctoral thesis, Chalmers University of Technology and University of Göteborg (1994).

    Google Scholar 

  15. M. Fay, First-order unification in an equational theory, Fourth Workshop on Automated Deduction (1979), pp. 161–167.

    Google Scholar 

  16. L. Hallnäs, On normalization of proofs in set theory, Doctoral thesis, University of Stockholm (1983).

    Google Scholar 

  17. G. Huet, Constrained resolution: a complete method for higher order logic, Ph.D., Case Western Reserve University (1972).

    Google Scholar 

  18. G. Huet, A mechanization of type theory, International Joint Conference on Artificial Intelligence (1973), pp. 139–146.

    Google Scholar 

  19. G. Huet, A unification algorithm for typed lambda calculus, Theoretical Computer Science, 1,1 (1975), pp. 27–57.

    Article  MathSciNet  Google Scholar 

  20. G. Huet, Résolution d’équations dans les Langages d’Ordre 1,2,..., ω, Thèse d’ État, Université de Paris VII (1976).

    Google Scholar 

  21. J.-M. Hullot, Canonical forms and unification, W. Bibel and R. Kowalski (Eds.) Conference on Automated Deduction, Lecture Notes in Computer Science 87, Springer-Verlag (1980), pp. 318–334.

    Google Scholar 

  22. J.-P. Jouannaud and C. Kirchner, Solving equations in abstract algebras: a rulebased survey of unification, J.-L. Lassez and G. Plotkin (Eds.) Computational logic. Essays in honor of Alan Robinson, MIT press (1991), pp. 257–321.

    Google Scholar 

  23. J.W. Klop, V. van Oostrom, and F. van Raamsdonk, Combinatory reduction systems: introduction and survey, Theoretical Computer Science, 121 (1993), pp. 279–308.

    Article  MATH  MathSciNet  Google Scholar 

  24. D.A. Miller, Proofs in higher order logic, Ph.D., Carnegie Mellon University (1983).

    Google Scholar 

  25. D.A. Miller, A compact representation of proofs, Studia Logica, 46,4 (1987).

    Google Scholar 

  26. G. Plotkin, Building-in equational theories, Machine Intelligence, 7 (1972), pp. 73–90.

    MathSciNet  MATH  Google Scholar 

  27. W.V.O. Quine, Set theory and its logic, Belknap press (1969).

    Google Scholar 

  28. J.A. Robinson. New directions in mechanical theorem proving. A.J.H. Morrell (Ed.) Proceedings of the International Federation for Information Processing Congress, 1968, North Holland (1969), pp. 63–67.

    Google Scholar 

  29. J.A. Robinson. A note on mechanizing higher order logic. Machine Intelligence 5, Edinburgh university press (1970), pp. 123–133.

    Google Scholar 

  30. M. Stickel, Automated deduction by theory resolution, Journal of Automated Reasoning, 4,1 (1985), pp. 285–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dowek, G. (2000). Automated Theorem Proving in First-Order Logic Modulo: On the Difference between Type Theory and Set Theory. In: Caferra, R., Salzer, G. (eds) Automated Deduction in Classical and Non-Classical Logics. FTP 1998. Lecture Notes in Computer Science(), vol 1761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46508-1_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46508-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67190-9

  • Online ISBN: 978-3-540-46508-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics