Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generalized Maximum Independent Sets for Trees in Subquadratic Time

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1741))

Included in the following conference series:

Abstract

In this paper we consider a special case of the Maximum Weighted Independent Set problem for graphs: given a vertex- and edge- weighted tree T = (V,E) where |V| = n, and a real number b, determine the largest weighted subset P of V such that the distance between the two closest elements of P is at least b. We present an O(n log3 n) algorithm for this problem when the vertices have unequal weights. The space requirement is O(n log n). This is the first known subquadratic algorithm for the problem. This solution leads to an O(n log4 n) algorithm to the previously-studied Weighted Max-Min Dispersion Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. K. Bhattacharya and M. E. Houle. Generalized maximum independent sets for trees. Proceedings of Computing: the Australasian Theory Symposium (CATS97), Sydney, Feb. 1997.

    Google Scholar 

  2. P. Eades, T. Lin and X. Lin. Minimum size h-v drawings. Advanced Visual Interfaces (Proc. AVI’ 92), World Scientific Series in Computer Science, 36:386–394, 1992.

    Google Scholar 

  3. E. Erkut. The discrete p-dispersion problem. Research Paper No. 87-5, Dept. of Finance and Management Science, University of Calgary, Apr. 1989.

    Google Scholar 

  4. E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European Journal of Operations Research, 40:275–291, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Erkut, T. Baptie and B. von Hohenbalken. The discrete p-maxian location problem. Computers in OR, 17(1):51–61, 1990.

    Article  MATH  Google Scholar 

  6. U. Friege, G. Kortsarz, D. Peleg. The dense k-subgraph problem. Manuscript, June 1998.

    Google Scholar 

  7. G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. Journal of Algorithms, 4:61–80, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Hassin, S. Rubinstein and A. Tamir. Approximation algorithms for maximum facility dispersion. Operations Research Letters, 21:133–137, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. M. Halldórsson, K. Iwano, N. Katoh and T. Tokuyama. Finding subsets maximizing minimum structures. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, pp. 150–157, 1995.

    Google Scholar 

  10. G. Kortsarz and D. Peleg. On choosing a dense subgraph. In Proc. 34th IEEE FOCS, Palo Alto, USA, pp. 692–701, 1993.

    Google Scholar 

  11. M. J. Kuby. Programming models for facility dispersion: the p-dispersion and maximum dispersion problems. Geographical Analysis, 19(4):315–329, 1987.

    Article  Google Scholar 

  12. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.

    Google Scholar 

  13. S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. Operations Research, 42(2):299–310, 1994.

    Article  MATH  Google Scholar 

  14. D. J. Rosenkrantz, G. K. Tayi and S. S. Ravi. Capacitated facility dispersion problems. Manuscript, 1997.

    Google Scholar 

  15. L. Stockmeyer. Optimal orientation of cells in slicing floorplan design. Information and Control, 57:91–101, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Tamir. Obnoxious facility location on graphs. SIAM J. Disc. Math., 4:550–567, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Tamir. Comments on the paper `Heuristic and special case algorithms for dispersion problems’ by S. S. Ravi. D. J. Rosenkrantz and G. K. Tayi. Operations Research, 46:157–158, 1998.

    Google Scholar 

  18. D. J. White. The maximal dispersion problem and the `first point outside the neighbourhood’ heuristic. Computers and Operations Research, 18:43–50, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharya, B.K., Houle, M.E. (1999). Generalized Maximum Independent Sets for Trees in Subquadratic Time. In: Algorithms and Computation. ISAAC 1999. Lecture Notes in Computer Science, vol 1741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46632-0_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-46632-0_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66916-6

  • Online ISBN: 978-3-540-46632-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics