Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The VC-Dimension of Subclasses of Pattern Languages

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1720))

Included in the following conference series:

  • 605 Accesses

Abstract

This paper derives the Vapnik Chervonenkis dimension of several natural subclasses of pattern languages. For classes with unbounded VC-dimension, an attempt is made to quantify the “rate of growth” of VC-dimension for these classes. This is achieved by computing, for each n, size of the “smallest” witness set of n elements that is shattered by the class. The paper considers both erasing (empty substitutions allowed) and nonerasing (empty substitutions not allowed) pattern languages. For erasing pattern languages, optimal bounds for this size — within polynomial order — are derived for the case of 1 variable occurrence and unary alphabet, for the case where the number of variable occurrences is bounded by a constant, and the general case of all pattern languages. The extent to which these results hold for nonerasing pattern languages is also investigated. Some results that shed light on efficient learning of subclasses of pattern languages are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer and System Sciences, 21:46–62, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Angluin. Inductive inference of formal languages from positive data. Information and Control, 45:117–135, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Auer, R. C. Holte, and W. Maass. Theory and applications of agnostic PAC-learning with small decision trees. In Proceedings of the 12th International Conference on Machine Learning, pages 21–29. Morgan Kaufmann, 1995.

    Google Scholar 

  4. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor. Information Processing Letters, 24:377–380, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Dobkin, D. Gunopoulos, and S. Kasif. Computing optimal shallow decision trees. In Proceedings of the International Workshop on Mathematics in Artificial Intelligence, 1996.

    Google Scholar 

  7. T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, and T. Zeugmann. Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries. In Ming Li and Akira Maruoka, editors, Algorithmic Learning Theory: Eighth International Workshop (ALT’ 97), volume 1316 of Lecture Notes in Artificial Intelligence, pages 260–276, 1997.

    Google Scholar 

  8. E. M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

    Article  MATH  Google Scholar 

  9. D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100(1):78–150, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Hoeffgen, H. Simon, and K. van Horn. Robust trainability of single neurons. Preprint, 1993.

    Google Scholar 

  11. M. Kearns and L. Pitt. A polynomial-time algorithm for learning k-variable pattern languages. In R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of the Second Annual Workshop on Computational Learning Theory. Morgan Kaufmann, 1989.

    Google Scholar 

  12. M. Kearns, R. Schapire, and L. Sellie. Towards efficient agnostic learning. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 341–352. ACM Press, 1992.

    Google Scholar 

  13. K.-I Ko, A. Marron, and W.-G. Tseng. Learning string patterns and tree patterns from examples. In Machine Learning: Proceedings of the Seventh International Conference, pages 384–391, 1990.

    Google Scholar 

  14. S. Lange and T. Zeugmann. Monotonic versus non-monotonic language learning. In G. Brewka, K. Jantke, and P. H. Schmitt, editors, Proceedings of the Second International Workshop on Nonmonotonic and Inductive Logic, volume 659 of Lecture Notes in Artificial Intelligence, pages 254–269. Springer-Verlag, 1993.

    Google Scholar 

  15. A. Marron. Learning pattern languages from a single initial example and from queries. In D Haussler and L. Pitt, editors, Proceedings of the First Annual Workshop on Computational Learning Theory, pages 345–358. Morgan Kaufmann, 1988.

    Google Scholar 

  16. A. Marron and K. Ko. Identification of pattern languages from examples and queries. Information and Computation, 74(2), 1987.

    Google Scholar 

  17. A. Mitchell. Learnability of a subclass of extended pattern languages. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory. ACM Press, 1998.

    Google Scholar 

  18. R. Reischuk and T. Zeugmann. Learning one-variable pattern languages in linear average time. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 198–208. ACM Press, 1998.

    Google Scholar 

  19. P. Rossmanith and T. Zeugmann. Learning k-variable pattern languages efficiently stochastically finite on average from positive data. In Proc. 4th International Colloquium on Grammatical Inference (ICGI-98), LNAI 1433, pages 13–24. Springer, 1998.

    Google Scholar 

  20. A. Salomma. Patterns (The Formal Language Theory Column). EATCS Bulletin, 54:46–62, 1994.

    Google Scholar 

  21. A. Salomma. Return to patterns (The Formal Language Theory Column). EATCS Bulletin, 55:144–157, 1994.

    Google Scholar 

  22. R.E. Schapire. Pattern languages are not learnable. In M. Fulk and J. Case, editors, Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 122–129. Morgan Kaufmann, 1990.

    Google Scholar 

  23. T. Shinohara. Polynomial time inference of extended regular pattern languages. In RIMS Symposia on Software Science and Engineering, Kyoto, Japan, volume 147 of Lecture Notes in Computer Science, pages 115–127. Springer-Verlag, 1982.

    Google Scholar 

  24. T. Shinohara and A. Arikawa. Pattern inference. In Klaus P. Jantke and Steffen Lange, editors, Algorithmic Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial Intelligence, pages 259–291. Springer-Verlag, 1995.

    Google Scholar 

  25. L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitchell, A., Scheffer, T., Sharma, A., Stephan, F. (1999). The VC-Dimension of Subclasses of Pattern Languages. In: Watanabe, O., Yokomori, T. (eds) Algorithmic Learning Theory. ALT 1999. Lecture Notes in Computer Science(), vol 1720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46769-6_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-46769-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66748-3

  • Online ISBN: 978-3-540-46769-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics