Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lifted Inequalities for 0-1 Mixed Integer Programming: Basic Theory and Algorithms

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Abstract

We study the mixed 0-1 knapsack polytope, which is defined by a single knapsack constraint that contains 0-1 and bounded continuous variables. We develop a lifting theory for the continuous variables. In particular, we present a pseudo-polynomial algorithm for the sequential lifting of the continuous variables. We introduce the concept of super-linear inequalities and show that our lifting scheme can be significantly simplified for them. Finally, we show that superlinearity results can be generalized to nonsuperlinear inequalities when the coefficients of the continuous variables lifted are large.

This research was supported by NSF grants DMI-0100020 and DMI-0121495.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming, 58:295–324, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers. SIAM Journal on Applied Mathematics, 34:119–148, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146–164, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Christof and A. Löbel. PORTA: A POlyhedron Representation Transformation Algorithm. http://www.zib.de/Optimization/Software/Porta/, 1997.

  5. H.P. Crowder, E.L. Johnson, and M.W. Padberg. Solving large-scale zero-one linear programming problems. Operations Research, 31:803–834, 1983.

    Article  MATH  Google Scholar 

  6. I.R. de Farias, Johnson E.L., and Nemhauser G.L. A polyhedral study of the cardinality constrained knapsack problem. Technical Report 01-05, Georgia Institute of Technology, 2001.

    Google Scholar 

  7. I.R. de Farias, E.L. Johnson, and G.L. Nemhauser. A generalized assignment problem with special ordered sets: A polyhedral approach. Mathematical Programming, 89:187–203, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. I.R. de Farias, E.L. Johnson, and G.L. Nemhauser. Facets of the complementarity knapsack polytope. To appear in Mathematics of Operations Research.

    Google Scholar 

  9. I.R. de Farias and G.L. Nemhauser. A family of inequalities for the generalized assignment polytope. Operations Research Letters, 29:49–51, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  10. I.R. de Farias. A Polyhedral Approach to Combinatorial Problems. PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1995.

    Google Scholar 

  11. R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, RAND Corporation, 1960.

    Google Scholar 

  12. R.E. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra and Its Applications, 2:451–558, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  13. Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for 0-1 integer programs: Computation. INFORMS Journal on Computing, 10:427–437, 1998.

    Article  MathSciNet  Google Scholar 

  14. Z. Gu. Lifted Cover Inequalities for 0-1 and Mixed 0-1 Integer Programs. PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1995.

    Google Scholar 

  15. P.L. Hammer, E.L. Johnson, and U.N. Peled. Facets of regular 0-1 polytopes. Mathematical Programming, 8:179–206, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Marchand and L.A. Wolsey. The 0-1 knapsack problem with a single continuous variable. Mathematical Programming, 85:15–33, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.L. Nemhauser and L.A. Wolsey. A recursive procedure for generating all cuts for 0-1 mixed integer programs. Mathematical Programming, 46:379–390, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 5:199–215, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-P. P. Richard, I.R. de Farias, and G.L. Nemhauser. A simplex based algorithm for 0-1 mixed integer programming. Technical Report 01-09, Georgia Institute of Technology, 2001.

    Google Scholar 

  20. J.-P. P. Richard, I.R. de Farias, and G.L. Nemhauser. Lifted inequalities for 0-1 mixed integer programming: Basic theory and algorithms. Technical report, Georgia Institute of Technology, (in preparation).

    Google Scholar 

  21. J.-P. P. Richard, I.R. de Farias, and G.L. Nemhauser. Lifted inequalities for 0-1 mixed integer programming: Superlinear lifting. Technical report, Georgia Institute of Technology, (in preparation).

    Google Scholar 

  22. R. Weismantel. On the 0/1 knapsack polytope. Mathematical Programming, 77:49–68, 1997.

    MathSciNet  MATH  Google Scholar 

  23. L.A. Wolsey. Faces for a linear inequality in 0-1 variables. Mathematical Programming, 8:165–178, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  24. L.A. Wolsey. Facets and strong valid inequalities for integer programs. Operations Research, 24:367–372, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Zemel. Lifting the facets of zero-one polytopes. Mathematical Programming, 15:268–277, 1978.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richard, JP.P., de Farias, I.R., Nemhauser, G.L. (2002). Lifted Inequalities for 0-1 Mixed Integer Programming: Basic Theory and Algorithms. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics