Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel Two-Step W-Methods on Singular Perturbation Problems

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2328))

Abstract

Parallel two-step W-methods (shortly PTSW-methods) use s linearly-implicit external stages which may be processed in parallel. We discuss convergence properties of these methods on singularly perturbed problems and give estimates for the global error for non-constant stepsizes. Due to the high stage order of the method no order reduction occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CWI test set for IVP solvers, http://www.cwi.nl/cwi/projects/IVPtestset.

  2. E. Hairer, Ch. Lubich, and M. Roche, The numerical solution of differential-algebraic systems by Runge-Kutta methods, LN in Mathematics 1409 (1989), Springer.

    Google Scholar 

  3. E. Hairer and G. Wanner, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math. 111 (1999), 93–111.

    Article  MathSciNet  MATH  Google Scholar 

  4. -, Solving Ordinary Differential Equations II, 2. ed., Springer, 1996.

    Google Scholar 

  5. H. Podhaisky, B.A. Schmitt, and R. Weiner, Design, analysis and testing of some parallel two-step W-methods for stiff systems, to appear in APNUM.

    Google Scholar 

  6. S. Schneider, Convergence results for general linear methods on singular perturbation problems, BIT 33 (1993), 670–686.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Weiner, B.A. Schmitt, and H. Podhaisky, Two-step W-methods on singular perturbation problems, Report 73, FB Mathematik, Univ. Marburg (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiner, R., Schmitt, B.A., Podhaisky, H. (2002). Parallel Two-Step W-Methods on Singular Perturbation Problems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2001. Lecture Notes in Computer Science, vol 2328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48086-2_87

Download citation

  • DOI: https://doi.org/10.1007/3-540-48086-2_87

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43792-5

  • Online ISBN: 978-3-540-48086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics