Abstract
We revisit classical geometric search problems under the assumption of rational coordinates. Our main result is a tight bound for point separation, ie, to determine whether n given points lie on one side of a query line.We show that with polynomial storage the query time is Θ(log b/ log log b), where b is the bit length of the rationals used in specifying the line and the points. The lower bound holds in Yao’s cell probe model with storage in n O(1) and word size in b O(1). By duality, this provides a tight lower bound on the complexity on the polygon point enclosure problem: given a polygon in the plane, is a query point in it?
This work was supported in part by NSF Grant CCR-96-23768, ARO Grant DAAH04-96-1- 0181, NEC Research Institute, Ecole Polytechnique, and INRIA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M. A lower bound for finding predecessors in Yao’s cell probe model, Combinatorica, 8 (1988), 235–247.
Beame, P., Fich, F. Optimal bounds for the predecessor problem, Proc. 31st Annu. ACM Symp. Theory Comput. (1999), to appear.
Ben-Or, M. Lower bounds for algebraic computation trees, Proc. 15th Annu. ACM Symp. Theory Comput. (1983), 80–86.
Björner, A., Lovász, L., Yao, A. C. Linear decision trees: Volume estimates and topological bounds, Proc. 24th Annu. ACM Symp. Theory Comput. (1992), 170–177.
Chakrabarti, A., Chazelle, B., Gum, B., Lvov, A. A good neighbor is hard to find, Proc. 31st Annu. ACM Symp. Theory Comput. (1999), to appear.
Chazelle, B. The Discrepancy Method: Randomness and Complexity, Cambridge University Press, to appear.
Fredman, M. L. A lower bound on the complexity of orthogonal range queries, J.ACM, 28 (1981), 696–705.
Grigoriev, D., Karpinksi, M., Meyer auf der Heide, F., Smolensky, R.A lower bound for randomized algebraic decision trees, Computational Complexity, 6 (1997), 357–375.
Grigoriev, D., Karpinksi, M., Vorobjov, N. Improved lower bound on testing membership to a polyhedron by algebraic decision trees, Proc. 36th Annu. IEEE Symp. Foundat. Comput. Sci. (1995), 258–265.
Hoeffding, W. Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc., 58 (1963), 13–30.
Karlsson, R. G. Algorithms in a restricted universe, Tech Report CS-84-50, Univ.Waterloo, Waterloo, ON, 1984.
Karlsson, R. G., Munro, J. I. Proximity on a grid, Proc. 2nd Symp. Theoret. Aspects of Comput. Sci., LNCS Springer, vol.182 (1985), 187–196.
Karlsson, R. G., Overmars, M. H. Scanline algorithms on a grid, BIT, 28 (1988), 227–241.
Kushilevitz, E., Nisan, N. Communication Complexity, Cambridge University Press, 1997
Miltersen, P. B. Lower bounds for union-split-find related problems on random access machines, Proc. 26th Annu. ACM Symp. Theory Comput. (1994), 625–634.
Müller, H. Rasterized point location, Proc. Workshop on Graph-Theoretic Concepts in Comput. Sci., Trauner Verlag, Linz (1985), 281–293.
Overmars, M. H. Computational geometry on a grid: an overview, ed. R. A. Earnshaw, Theoretical Foundations of Computer Graphics and CAD, NATO ASI, vol.F40, Springer-Verlag (1988), 167–184.
Yao, A. C. Should tables be sorted?, J. ACM, 28 (1981), 615–628.
Yao, A. C. On the complexity of maintaining partial sums, SIAM J. Comput. 14 (1985), 277–288.
Yao, A. C. Decision tree complexity and Betti numbers, Proc. 26th Annu. ACM Symp. Theory Comput. (1994), 615–624.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chazelle, B. (1999). Geometric Searching over the Rationals. In: Nešetřil, J. (eds) Algorithms - ESA’ 99. ESA 1999. Lecture Notes in Computer Science, vol 1643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48481-7_31
Download citation
DOI: https://doi.org/10.1007/3-540-48481-7_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66251-8
Online ISBN: 978-3-540-48481-3
eBook Packages: Springer Book Archive