Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Brownian Motion after Einstein: Some New Applications and New Experiments

  • Chapter
Controlled Nanoscale Motion

Abstract

The first half of this chapter describes the development in mathematical models of Brownian motion after Einstein’s seminal papers [1] and current applications to optical tweezers. This instrument of choice among single-molecule biophysicists is also an instrument of precision that requires an understanding of Brownian motion beyond Einstein’s. This is illustrated with some applications, current and potential, and it is shown how addition of a controlled forced motion on the nano-scale of the tweezed object’s thermal motion can improve the calibration of the instrument in general, and make it possible also in complex surroundings. The second half of the present chapter, starting with Sect. 9.1, describes the co-evolution of biological motility models with models of Brownian motion, including very recent results for how to derive cell-type-specific motility models from experimental cell trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Einstein (1956). Investigations on the Theory of the Brownian movement. Edited and annotated by R. Fürth. Translated by A. D. Cowper. Dover Publications, Inc.

    Google Scholar 

  2. J. Renn (2005).Ann. Phys. (Leipzig), 14 (Suppl.), 23.

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Langevin (1908). C. R. Acad. Sci. (Paris), 146, p. 530. Translated and commented in [4].

    MATH  Google Scholar 

  4. D. S. Lemons and A. Gythiel (1997). Am. J. Phys., 65, pp. 1079.

    Article  ADS  Google Scholar 

  5. L. S. Ornstein (1918). Proc. Amst., 21, pp. 96–108.

    Google Scholar 

  6. G. E. Uhlenbeck and L. S. Ornstein (1930). Phys. Rev., 36, pp. 823–841.

    Article  ADS  Google Scholar 

  7. H. A. Lorentz (1921). Lessen over Theoretishe Natuurkunde. E. J. Brill, Leiden.

    Google Scholar 

  8. G. G. Stokes (1851). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, IX, pp. 8–106, Reprinted in Mathematical and Physical Papers, 2nd ed., vol. 3. New York: Johnson Reprint Corp., p. 1, 1966.

    ADS  Google Scholar 

  9. L. L. Landau and E. M. Lifshitz (1959). Fluid Mechanics. Addison-Wesley, Reading, MA.

    Google Scholar 

  10. A. Rahman (1964). Phys. Rev., 136, p. A405.

    Article  ADS  Google Scholar 

  11. A. Rahman (1966). J. Chem. Phys., 45, p. 2585.

    Article  ADS  Google Scholar 

  12. B. J. Alder and T. E. Wainwright (1967). Phys. Rev. Lett., 18, pp. 988–990.

    Article  ADS  Google Scholar 

  13. B. J. Alder and T. E. Wainwright (1970). Phys. Rev., 1, pp. 18–21.

    Article  ADS  Google Scholar 

  14. R. Zwanzig and M. Bixon (1970). Phys. Rev. A, 2, pp. 2005–2012.

    Article  ADS  Google Scholar 

  15. J. Boussinesq (1903). Théorie Analytique de la Chaleur, vol. II Paris.

    Google Scholar 

  16. A. Widom (1971). Phys. Rev. A, 3, pp. 1394–1396.

    Article  ADS  Google Scholar 

  17. K. M. Case (1971). Phys. Fluid, 14, pp. 2091–2095.

    Article  MATH  ADS  Google Scholar 

  18. D. Bedeaux and P. Mazur (1974). Physica, 76, pp. 247–258.

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Pomeau and P. Résibois (1975). Phys. Rep., 19C, pp. 63–139.

    Article  ADS  Google Scholar 

  20. R. Kubo, M. Toda, and N. Hashitsume (1985). Statistical Physics II Nonequilibrium Statistical Mechanics. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  21. K. Berg-Sørensen and H. Flyvbjerg (2004). Rev. Sci. Ins., 75, pp. 594–612.

    Article  ADS  Google Scholar 

  22. K. C. Neuman and S. M. Block (2004). Rev. Sci. Instr., 75, pp. 2782–2809.

    Article  ADS  Google Scholar 

  23. E. J. G. Petermann, M. van Dijk, L. G. Kapiteln, and C. F. Schmidt (2003). Rev. Sci. Instr., 74, pp. 3246–3249.

    Article  ADS  Google Scholar 

  24. B. Lukić et al. (2005). Phys. Rev. Lett., 95, p. 160601.

    Article  ADS  Google Scholar 

  25. J. P. Boon and A. Bouiller (1976). Phys. Lett., 55A, pp. 391–392.

    ADS  Google Scholar 

  26. A. Bouiller, J. P. Boon, and P. Deguent (1978). J. Phys. (Paris), 39, pp. 159–165.

    Google Scholar 

  27. G. L. Paul and P. N. Pusey (1981). J. Phys. A: Math. Gen., 14, pp. 3301–3327.

    Article  ADS  Google Scholar 

  28. P. N. Pusey. Private communication.

    Google Scholar 

  29. K. Ohbayashi, T. Kohno, and H. Utiyama (1983). Phys. Rev. A, 27, pp. 2632–2641.

    Article  ADS  Google Scholar 

  30. K. Berg-Sørensen and H. Flyvbjerg (2005). New J. Phys., 7(38).

    Google Scholar 

  31. H. Faxén (1923). Ark. Mat. Astron. Fys., 17, p. 1.

    Google Scholar 

  32. J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. (Nijhoff, The Hague, 1983), p. 327.

    Google Scholar 

  33. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg. arXiv: physics/0603037.

    Google Scholar 

  34. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block (1993). Nature, 365(6448), 721–727.

    Article  ADS  Google Scholar 

  35. K. Przibram (1913). Pflügers Arch. Physiol., 153, pp. 401–405.

    Article  Google Scholar 

  36. R. Fürth (1917). Ann. Phys., 53, p. 177.

    Article  Google Scholar 

  37. R. Fürth (1920). Z. Physik, 2, pp. 244–256.

    Article  ADS  Google Scholar 

  38. M. H. Gail and C. W. Boone (1970). Biophys. J., 10, pp. 980–993.

    Article  ADS  Google Scholar 

  39. D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen, and H. Flyvbjerg (2005). Biophys. J., 89, pp. 912–931.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Selmeczi, D. et al. (2007). Brownian Motion after Einstein: Some New Applications and New Experiments. In: Linke, H., Månsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_9

Download citation

Publish with us

Policies and ethics