Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Covering radius: Improving on the sphere-covering bound

  • Full Papers
  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 357))

Abstract

Currently, the best general lower bound for the covering radius of a code is the sphere covering bound. For binary linear codes, the paper presents a new method to detect cases in which this bound is not attained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.A. Brualdi, V.S. Pless and R.M. Wilson, "Short Codes with a Given Covering Radius", to appear in IEEE Trans. Inform. Theory.

    Google Scholar 

  2. A.R. Calderbank and N.J.A. Sloane, "Inequalities for Covering Codes", to appear in IEEE Trans. Inform. Theory.

    Google Scholar 

  3. G.D. Cohen, M.G. Karpovsky, H.F. Mattson, Jr. and J.R. Schatz, "Covering Radius — Survey and Recent Results", IEEE Trans. Inform. Theory, vol. IT-31, pp. 328–343, 1985.

    Google Scholar 

  4. R.L. Graham and N.J.A. Sloane, "On the Covering Radius of Codes", IEEE Trans. Inform. Theory, vol. IT-31, pp. 385–401, 1985.

    Google Scholar 

  5. J. Simonis, "The Minimal Covering Radius t[15,6] of a 6-Dimensional Binary Linear Code of Length 15 is Equal to 4", to appear in IEEE Trans. Inform. Theory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Teo Mora

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simonis, J. (1989). Covering radius: Improving on the sphere-covering bound. In: Mora, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1988. Lecture Notes in Computer Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51083-4_73

Download citation

  • DOI: https://doi.org/10.1007/3-540-51083-4_73

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51083-3

  • Online ISBN: 978-3-540-46152-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics