Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal parallel algorithms for the recognition and colouring outerplanar graphs

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1989 (MFCS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 379))

Abstract

We show how to test outerplanarity in time T(n)=O(lognlog n) using n/T(n) processors of CREW PRAM. It is the first optimal parallel algorithm recognizing a nontrivial class of graphs and it is the main result of the paper. If the graph is outerplanar and biconnected then a Hamiltonian cycle is produced. Using this cycle and optimal parsing algorithm for bracket expressions the construction of the tree of faces as well as vertex colourings (with the smallest number of colours) are also done by optimal parallel algorithms.

(extended abstract)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. I. Bar-On, U. Vishkin. Optimal parallel generation of the computation tree form. ACM Trans. on Progr. Lang. and Systems 7 (1985), pp. 348–357.

    Google Scholar 

  2. K. Diks. A fast parallel algorithm for six colouring of planar graphs. Proc. MFCS'86, LNCS 233 (1986). pp. 273–282.

    Google Scholar 

  3. K. Diks, W. Rytter. On optimal parallel computations for sequences of brackets. Workshop on sequences, Positano, 1988, to appear in Springer Verlag.

    Google Scholar 

  4. A. Goldberg, S. Plotkin, G. Shannon. Parallel symmetry breaking in sparse graphs. ACM Symp. on Theory of Comp. (1987), pp. 315–324.

    Google Scholar 

  5. A. Gibbons, W. Rytter. Optimal parallel algorithms for dynamic expressions evaluation and context free recognition. To appear in Information and Computation (1989).

    Google Scholar 

  6. A. Gibbons, W. Rytter. Efficient parallel algorithms. Cambridge University Press (1988).

    Google Scholar 

  7. T. Hagerup. Optimal parallel algorithms on planar graphs. Proc. Aegen Workshop on Computing (1988), LNCS 319, pp. 24–32.

    Google Scholar 

  8. T. Hagerup, M. Chrobak, K. Diks. Optimal parallel 5-colouring of planar graphs. To appear in SIAM J. Computing (1989).

    Google Scholar 

  9. M. Syslo. Outerplanar graphs: characterization, testing, coding and counting. Bull. Acad. Pol. Sci. 26 (1978), pp. 675–684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antoni Kreczmar Grazyna Mirkowska

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diks, K., Hagerup, T., Rytter, W. (1989). Optimal parallel algorithms for the recognition and colouring outerplanar graphs. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_68

Download citation

  • DOI: https://doi.org/10.1007/3-540-51486-4_68

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51486-2

  • Online ISBN: 978-3-540-48176-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics