Abstract
We show how to test outerplanarity in time T(n)=O(lognlog n) using n/T(n) processors of CREW PRAM. It is the first optimal parallel algorithm recognizing a nontrivial class of graphs and it is the main result of the paper. If the graph is outerplanar and biconnected then a Hamiltonian cycle is produced. Using this cycle and optimal parsing algorithm for bracket expressions the construction of the tree of faces as well as vertex colourings (with the smallest number of colours) are also done by optimal parallel algorithms.
(extended abstract)
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
I. Bar-On, U. Vishkin. Optimal parallel generation of the computation tree form. ACM Trans. on Progr. Lang. and Systems 7 (1985), pp. 348–357.
K. Diks. A fast parallel algorithm for six colouring of planar graphs. Proc. MFCS'86, LNCS 233 (1986). pp. 273–282.
K. Diks, W. Rytter. On optimal parallel computations for sequences of brackets. Workshop on sequences, Positano, 1988, to appear in Springer Verlag.
A. Goldberg, S. Plotkin, G. Shannon. Parallel symmetry breaking in sparse graphs. ACM Symp. on Theory of Comp. (1987), pp. 315–324.
A. Gibbons, W. Rytter. Optimal parallel algorithms for dynamic expressions evaluation and context free recognition. To appear in Information and Computation (1989).
A. Gibbons, W. Rytter. Efficient parallel algorithms. Cambridge University Press (1988).
T. Hagerup. Optimal parallel algorithms on planar graphs. Proc. Aegen Workshop on Computing (1988), LNCS 319, pp. 24–32.
T. Hagerup, M. Chrobak, K. Diks. Optimal parallel 5-colouring of planar graphs. To appear in SIAM J. Computing (1989).
M. Syslo. Outerplanar graphs: characterization, testing, coding and counting. Bull. Acad. Pol. Sci. 26 (1978), pp. 675–684.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diks, K., Hagerup, T., Rytter, W. (1989). Optimal parallel algorithms for the recognition and colouring outerplanar graphs. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_68
Download citation
DOI: https://doi.org/10.1007/3-540-51486-4_68
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51486-2
Online ISBN: 978-3-540-48176-8
eBook Packages: Springer Book Archive