Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On product hierarchies of automata

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 380))

Included in the following conference series:

  • 147 Accesses

Abstract

We have seen that, with respect to homomorphic realization, the ν i —products behave in a way similar to the α i —products on classes satisfying the Letičevskiî criterion or not satisfying the Letičevskiî criteria. In particular, a class K is homomorphically ν 3—complete if and only if it satisfies the Letičevskiî criterion. As opposed to the α i —products, the ν i —hierarchy is proper on classes with the semi-Letičevskiî criterion. This holds also for homomorphic realization.

To give a summary of the rest of our comparison results, take any two of our product notions, the “β—product” and the “γ—product”, say. Define

γ if

holds for all K. Similarly let

γ if we have

for all K. We obtain two poset structures whose exact diagrams are given in the figures below. The bottom is the quasi-direct product in both cases, for it is obvious that

and

ν 1, henceforth also

and

. (We write β<γ if β≤γ but γ≰β.)

Recently it has been shown by the first two authors that there is a class K satisfying the Letičevskiî criterion but which is not homomorphically ν 2-complete.

Research supported by Alexander von Humboldt Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbib, M.A. (Ed.), Machines, Languages and Semigroups, with a major contribution by K. Krohn and J.L. Rhodes, Academic Press, 1968.

    Google Scholar 

  2. Dömösi, P., Ésik, Z., On the hierarchy of ν i —products of automata, Acta Cybernetica, 8(1988), 253–257.

    Google Scholar 

  3. Dömösi, P., Ésik, Z., On homomorphic simulation of automata by ν 1products, Papers on Automata and Languages, IX(1987), 91–112.

    Google Scholar 

  4. Dömösi, P., Ésik, Z., Homomorphically complete classes of automata for the ν 3product, in preparation.

    Google Scholar 

  5. Dömösi, P., Imreh, B., On ν i —products of automata, Acta Cybernetica, 6(1983), 149–162.

    Google Scholar 

  6. Eilenberg, S., Automata, Languages and Machines, Vol. B, Academic Press, London, 1976.

    Google Scholar 

  7. Ésik, Z., Homomorphically complete classes of automata with respect to the α 2product, Acta Sci. Math., 48(1985), 135–141.

    Google Scholar 

  8. Ésik, Z., Loop products and loop-free products, Acta Cybernetica, 8(1987), 45–58.

    Google Scholar 

  9. Ésik, Z., Gécseg, F., On α 0products and α 2products, Theoret. Comput. Sci., 48(1986), 1–8.

    Article  Google Scholar 

  10. Ésik, Z., Horváth, Gy., The α 2product is homomorphically general, Papers on Automata Theory, V(1983), 49–62.

    Google Scholar 

  11. Gécseg, F., Composition of automata, 2nd Colloq. Automata, Languages and Programming, 1974, LNCS, 14(1974), 351–363.

    Google Scholar 

  12. Gécseg, F., On products of abstract automata, Acta Sci. Math., 38(1976), 21–43.

    Google Scholar 

  13. Gécseg, F., On ν 1products of commutative automata, Acta Cybernetica, 7(1984), 55–59.

    Google Scholar 

  14. Gécseg, F., Products of automata, Springer Verlag, 1986.

    Google Scholar 

  15. Gécseg, F., Imreh, B., On metric equivalence of ν i —products, Acta Cybernetica, 8(1987), 129–134.

    Google Scholar 

  16. Gécseg, F., Imreh, B., A comparison of α i —products and ν i —products, Foundations of Control Engineering, 12(1987), 1–9.

    Google Scholar 

  17. Gécseg, F., Jürgensen, H., On α 0ν 1products of automata, Univ. of Western Ontario, Report No 162(1987), 1–14.

    Google Scholar 

  18. Gluškov, V.M., Abstract theory of automata (Russian), Uspehi Matematiceskih Nauk, 16:5(101), (1961), 3–62.

    Google Scholar 

  19. Hartmanis, J., Stearns, R.E., Algebraic structure theory of sequential machines, Prentice-Hall, 1966.

    Google Scholar 

  20. Imreh, B., On ν i —products of automata, Acta Cybernetica, 3(1978), 301–307.

    Google Scholar 

  21. Imreh, B., A note on the generalized ν 1product, Acta Cybernetica, 8(1988), 247–252.

    Google Scholar 

  22. Kim, K.H., Roush, F.W., Generating all linear transformations, Linear Algebra and its Applications, 37(1981), 97–101.

    Article  Google Scholar 

  23. Letičevskii, A.A., Conditions of completeness for finite automata (Russian), Žurnal Vič. Mat. i Mat. Fiz., 1(1961), 702–710.

    Google Scholar 

  24. Tchuente, M., Computation on binary tree-networks, Discrete Appl. Math., 14(1986), 295–310.

    Article  Google Scholar 

  25. Tchuente, M., Computation on finite networks on automata, in: Automata Networks, C. Choffrut (Ed.), LNCS, 316, 1986, 53–67.

    Google Scholar 

  26. Zeiger, H.P., Cascade synthesis of finite state machines, Inform. and Control, 10(1967), 419–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Csirik J. Demetrovics F. Gécseg

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dömösi, P., Ésik, Z., Imreh, B. (1989). On product hierarchies of automata. In: Csirik, J., Demetrovics, J., Gécseg, F. (eds) Fundamentals of Computation Theory. FCT 1989. Lecture Notes in Computer Science, vol 380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51498-8_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-51498-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51498-5

  • Online ISBN: 978-3-540-48180-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics