Abstract
We present a tight tradeoff between the expected communication complexity \(\bar C\)and the number R of random bits used by any Las Vegas protocol (for a two-processor system) for the list-disjointness function of two lists of n numbers of n bits each. This function evaluates to 1 if and only if the two lists correspond in at least one position. We show a log(n 2/\(\bar C\)) lower bound on the number of random bits used by any Las Vegas protocol, Ω(n) ≤ \(\bar C\)≤ O(n 2). We also show that expected communication complexity \(\bar C\), Ω(n log n) ≤ \(\bar C\)≤ O(n 2), can be achieved using no more than (1+o(1)) log(n 2/\(\bar C\)) random bits.
This work was supported by the DFG, SFB 124, TP B2, VLSI-Entwurf und Parallelität and ESPRIT P3075 ALCOM
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A.V. Aho, J.D. Ullman, M. Yannakakis ”On notions of information transfer in VLSI circuits” Proc. 15th ACM STOC 1983, 133–139
R. Canetti, O. Goldreich ”Bounds on tradeoffs between randomness and communication complexity” to appear in FOCS 1990
M. Fürer ”The power of randomness for communication complexity” Proc. 19th ACM STOC 1987, 178–181
R. Fleischer “Communication complexity of multi processor systems” IPL 30 (1989), 57–65
K.-B. Gundlach ”Einführung in die Zahlentheorie BI Bd. 772, 1972
B. Halstenberg ”Zweiprozessorkommunikationskomplexität” Diplomarbeit University of Bielefeld 1986
B. Halstenberg, R. Reischuk ”Relations between communication complexity classes” Proc. 3rd Structure Conference 1988
B. Halstenberg, R. Reischuk ”On different modes of communication” Proc. 20th ACM STOC 1988, 162–172
Hardy & Wright ”An Introduction to the Theory of Numbers” 5th edition, Oxford 1979
D. Krizanc, D. Peleg, E. Upfal ”A time-randomness tradeoff for oblivious routing” Proc. 20th ACM STOC 1988, 93–102
D.E. Knuth, A.C Yao ”The complexity of nonuniform random number generation” in Algorithms and Complexity, Ed. J.E. Traub, Academic Press N.Y., 1976, 357–428
R.J. Lipton, R. Sedgewick ”Lower bounds for VLSI” Proc. 13th ACM STOC 1981, 300–307
L. Lovász, M. Saks ”Lattices, möbius functions and communication complexity” Proc. 29th IEEE FOCS 1988, 81–90
K. Mehlhorn, E.M. Schmidt ”Las Vegas is better than determinism in VLSI and distributed computing” Proc. 14th ACM STOC 1982, 330–337
C.H. Papadimitriou, M. Sipser ”Communication complexity” Proc. 14th ACM STOC, 1982, 196–200 Journal of Computer and System Sciences 28, 1984, 260–269
P. Raghavan, M. Snir ”Memory versus randomization in on-line algorithms” ICALP 1989, 687–703
A.C. Yao ”Probabilistic computations: toward a unified measure of complexity” Proc. 18th IEEE FOCS 1977, 222–227
A.C. Yao ”Some complexity questions related to distributive computing” Proc. 11th ACM STOC 1979, 209–213
A.C. Yao ”Lower bounds by probabilistic arguments” Proc. 24th IEEE FOCS 1983, 420–428
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fleischer, R., Jung, H., Mehlhorn, K. (1991). A time-randomness tradeoff for communication complexity. In: van Leeuwen, J., Santoro, N. (eds) Distributed Algorithms. WDAG 1990. Lecture Notes in Computer Science, vol 486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54099-7_26
Download citation
DOI: https://doi.org/10.1007/3-540-54099-7_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54099-1
Online ISBN: 978-3-540-47405-0
eBook Packages: Springer Book Archive