Preview
Unable to display preview. Download preview PDF.
References
M.E.Alonso, T.Mora, M.Raimondo. A computational model for algebraic power series. J. Pure and Appl. Algebra, to appear.
R. Benedetti, J.J. Risler. Real Algebraic and Semialgebraic sets. Hermann, Paris 1990.
J.Heintz. Definability and fast quantifier elimination in algebraically closed fields. Theoretical Computer Science 24 (1983).
H.T.Kung, J.F.Traub. All Algebraic Functions can Be Computed Fast. J. ACM 25 (1978).
R.Ramanakoraisina. Complexité des fonctions de Nash. Comm. Algebra 17 (1989).
R.Ramanakoraisina. Bézout Theorem for Nash functions. Preprint U.E.R. Math.Univ. Rennes (1989).
O.Zariski, P.Samuel. Commutative Algebra Vol II. Van Nostrand 1960.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alonso, M.E., Mora, T., Raimondo, M. (1991). On the complexity of algebraic power series. In: Sakata, S. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1990. Lecture Notes in Computer Science, vol 508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54195-0_51
Download citation
DOI: https://doi.org/10.1007/3-540-54195-0_51
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54195-0
Online ISBN: 978-3-540-47489-0
eBook Packages: Springer Book Archive