Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Narrowing as an incremental constraint satisfaction algorithm

  • Session: Narrowing
  • Conference paper
  • First Online:
Programming Language Implementation and Logic Programming (PLILP 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 528))

  • 269 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alpuente, M. Falaschi, and G. Levi. Incremental Constraint Satisfaction for Equational Logic Programming. Technical report, Dipartimento di Informatica, Università di Pisa, 1991. in preparation.

    Google Scholar 

  2. P. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-resolution. Theoretical Computer Science, 59:3–23, 1988.

    Google Scholar 

  3. N. Dershowitz and A. Plaisted. Logic Programming cum Applicative Programming. In Proc. First IEEE Int'l Symp. on Logic Programming, pages 54–66. IEEE, 1984.

    Google Scholar 

  4. L. Fribourg. Slog: a logic programming language interpreter based on clausal superposition and rewriting. In Proc. Second IEEE Int'l Symp. on Logic Programming, pages 172–185. IEEE, 1985.

    Google Scholar 

  5. U. Furbach, S. Hölldobler, and J. Schreiber. Horn equality theories and paramodulation. Journal of Automated Reasoning, 5:309–337, 1989.

    Google Scholar 

  6. M. Gabbrielli and G. Levi. Modeling answer constraints in Constraint Logic Programs. In K. Furukawa, editor, Proc. eighth Int'l Conf. on Logic Programming. The MIT Press, 1991. to appear.

    Google Scholar 

  7. J.H. Gallier and S. Raatz. Extending SLD-resolution to equational Horn clauses using E-unification. Journal of Logic Programming, 6:3–43, 1989.

    Google Scholar 

  8. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic plus Functional Language. Journal of Computer and System Sciences, 42, 1991.

    Google Scholar 

  9. J. A. Goguen and J. Meseguer. Eqlog: equality, types and generic modules for logic programming. In D. de Groot and G. Lindstrom, editors, Logic Programming, Functions, Relations and Equations, pages 295–262. Prentice Hall, Englewood Cliffs, NJ, 1986.

    Google Scholar 

  10. P. Van Hentenryck. Incremental Constraint Satisfaction in logic programming. In D.H.D. Warren and P. Szeredi, editors, Proc. Seventh Int'l Conf. on Logic Programming, pages 189–202. The MIT Press, Cambridge, Mass., 1990.

    Google Scholar 

  11. S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 1989. subseries of Lecture Notes in Computer Science.

    Google Scholar 

  12. S. Hölldobler. Conditional equational theories and complete sets of transformations. Theoretical Computer Science, 75:85–110, 1990.

    Google Scholar 

  13. J.M. Hullot. Canonical Forms and Unification. In 5th Int'l Conf. on Automated Deduction, volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer-Verlag, Berlin, 1980.

    Google Scholar 

  14. H. Hussman. Unification in conditional-equational theories. Technical report, fakultät für mathematik und informatik, Universität Passau, 1986.

    Google Scholar 

  15. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Technical report, Department of Computer Science, Monash University, 1986.

    Google Scholar 

  16. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual ACM Symp. on Principles of Programming Languages, pages 111–119. ACM, 1987.

    Google Scholar 

  17. J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In J.-L. Lassez, editor, Proc. Fourth Int'l Conf. on Logic Programming, pages 196–218. The MIT Press, 1987.

    Google Scholar 

  18. S. Kaplan. Conditional Rewrite Rules. Theoretical Computer Science, 33:175–193, 1984.

    Google Scholar 

  19. J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987. second edition.

    Google Scholar 

  20. J.J. Moreno and M. Rodriguez-Artalejo. BABEL: A Functional and Logic Programming Language based on a constructor discipline and narrowing. In I. Grabowski, P. Lescanne, and W. Wechler, editors, Algebraic and Logic Programming, volume 343 of Lecture Notes in Computer Science, pages 223–232. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  21. W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic Computation, 7:295–317, 1989.

    Google Scholar 

  22. G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

    Google Scholar 

  23. J.H. Siekmann. Universal unification. In 7th Int'l Conf. on Automated Deduction, volume 170 of Lecture Notes in Computer Science, pages 1–42. Springer-Verlag, Berlin, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Maluszyński Martin Wirsing

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alpuente, M., Falaschi, M. (1991). Narrowing as an incremental constraint satisfaction algorithm. In: Maluszyński, J., Wirsing, M. (eds) Programming Language Implementation and Logic Programming. PLILP 1991. Lecture Notes in Computer Science, vol 528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54444-5_92

Download citation

  • DOI: https://doi.org/10.1007/3-540-54444-5_92

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54444-9

  • Online ISBN: 978-3-540-38362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics