Abstract
The Incremental Concept Formation method, as described in [19] is claimed therein to be “able to formulate diagnostically useful categories even without class information”, “given real world data on heart disease”. We suggest in this paper that the method does not derive categories from the data but from primary and derived attribute selection by showing that equal treatment of all attributes leads to a flat (one level) concept hierarchy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hartigan J.A., Clustering Algorithms, John WilleySons, New York 1975.
Anderberg M.R., Cluster Analysis for Applications, Academic Press, New York, 1973
Watanabe S., Pattern Recognition, Human and Machine, (1987)
Michalski R.S., Stepp R.E., Automated construction of classification, conceptual clustering versus numerical taxonomy, IEEE Transactions on PAMI-5, 1983, pp. 396–410
Michalski R.S., Stepp R.E., III. Learning from observations: conceptual clustering, in Machine Learning: An Artificial Intelligence Approach, Michalski R.S., Carbonell J.G., Mitchell T.M. (Eds), Morgan Kaufmann Publishers Inc., Los Altos, 1983
Stepp R.E., Michalski R.S., Conceptual clustering:Conceptual cluster-ing of structured objects, Artificial Intelligence 28,1, 1986, pp. 43–70
Stepp R.E., Michalski R.S., Conceptual clustering: Inventing goal-oriented classifications of structured objects, in Machine Learning II: An Artificial Intelligence Approach, Michalski R.S., Carbonell J.G., Mitchell T.M. (Eds), Morgan Kaufmann Publ.Inc., Los Altos, 1986
Dale B., On the comparison of conceptual clusterimng and numerical taxonomy, IEEE Transactions on PAMI-7, March 1985
Gluck M., Corter J., Information, uncertainty and the utility of categories, Proc. 7 Ann. Conf. of the Cognitive Sci., Ivrine CA (1985), 283–7
Kolodner J.L., Retrieval and Organizational strategies in conceptual memory: A computer model, Lawrence Erlbaum Associates Publ, London 1984
Fisher D., Langley P., Approaches to conceptual clustering, Proc. 9 IJCAI, Los Angeles, 1985, pp. 691–697
Fisher D., Knowledge acquisition via incremental conceptual clustering, Machine Learning 2,2,1987, pp. 139–172
Lebowitz M., Experiments with incremental concept formation: UNIMEM, Machine Learning 2,2, 1987, pp. 103–138
Fisher D.H., Conceptual clustering. learning from examples and inference, Proc. 4 Intenationbal Workshop on Machine Learning, Irvine, Morgan Kaufaman, 1987, pp. 38–49
Hadzikadic M., Yun D.Y.Y., Concept formation by goal-driven context-dependent classification, Proc.3 International Symposium on Methodologies for Intelligent Systems, Toronto, Italy, 1988, pp. 322–332
Kodratoff Y., Tecusi G., Learning based on conceptual distance, IEEE trans. on PAMI-10,6 (1988), pp. 897–909.
Hadzikadic M., Yun D.Y.Y., Concept formation by incremental conceptual clustering, Proc. IJCAI'89 Vol. 2, pp. 831–836
Fisher D.H., Noice-tolerant conceptual clustering, Proc. IJCAI'89 Vol. 2, pp. 825–830
Gennari J.H., Langley P., Fisher D., Models of incremental concept formation, Artificial Intelligence 40 (1989) 11–61
S.T. Wierzchon, A. Pacan, M.A. Klopotek, An Object-oriented Representation Framework For Hierarchical Evidential Reasoning, in: Ph. Jorrand, V. Sgurev: “Artificial Intelligence IV: Methods, Systems And Applications”, Proc. Conf.AIMSA '90, Albena, Bulgaria, 19–22 Sept.1990 r, North Holland, Amsterdam, New York, Oxford, Tokyo, 1990, pp. 239–248
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klopotek, M.A. (1991). On the phenomenon of flattening “flexible prediction” concept hierarchy. In: Jorrand, P., Kelemen, J. (eds) Fundamentals of Artificial Intelligence Research. FAIR 1991. Lecture Notes in Computer Science, vol 535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54507-7_9
Download citation
DOI: https://doi.org/10.1007/3-540-54507-7_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54507-1
Online ISBN: 978-3-540-38420-5
eBook Packages: Springer Book Archive