Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A perfect parallel dictionary

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1992 (MFCS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 629))

Abstract

We describe new randomized parallel algorithms for the problems of interval allocation, construction of static dictionaries, and maintenance of dynamic dictionaries. All of our algorithms run optimally in constant time with high probability. Our main result is the construction of what we call a perfect dictionary, a scheme that allows p processors implementing a set M in space proportional to ¦M¦ to process batches of p insert, delete, and lookup instructions on M in constant time pet batch.

Our best results are obtained for a new variant of the CRCW PRAM model of computation called the OR PRAM. For other variants of the CRCW PRAM we show slightly weaker results, with some resource bounds increased by a factor of ⊖(logk n), where k ∈ ℕ is fixed but arbitrarily large.

Supported in part by DFG grant Me 872/1-4.

Supported in part by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfsmethoden und Parallelität, and in port by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project ALGOM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bast and T. Hagerup, Fast and Reliable Parallel Hashing, manuscript. A preliminary version appeared in Proc. 3rd SPAA (1991), pp. 50–61.

    Google Scholar 

  2. O. Berkman and U. Vishkin, Recursive *-Tree Parallel Data-Structure, in Proc. 30th FOCS (1989), pp. 196–202.

    Google Scholar 

  3. R. Cole and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades: Micro and Macro Techniques for Designing Parallel Algorithms, in Proc. 18th STOC (1986), pp. 206–219.

    Google Scholar 

  4. M. Dietzfelbinger and F. Meyer auf der Heide, Dynamic Hashing in Real Time, in Informatik: Festschrift zum 60. Geburtstag von Günter Hotz (1992), Teubner-Texte zur Informatik, Band 1, Teubner, Stuttgart (a preliminary version appeared in Proc. 17th ICALP (1990), Springer LNCS, Vol. 443, pp. 6–19).

    Google Scholar 

  5. M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a Sparse Table with O(1) Worst Case Access Time, J. ACM 31 (1984), pp. 538–544.

    Article  MATH  Google Scholar 

  6. J. Gil, Y. Matias, and U. Vishkin, Towards a Theory of Nearly Constant Time Parallel Algorithms, in Proc. 32nd FOCS (1991), pp. 698–710.

    Google Scholar 

  7. M. T. Goodrich, Using Approximation Algorithms to Design Parallel Algorithms that May Ignore Processor Allocation, in Proc. 32nd FOCS (1991), pp. 711–722.

    Google Scholar 

  8. V. Grolmusz and P. Ragde, Incomparability in Parallel Computation, in Proc. 28th FOCS (1987), pp. 89–98.

    Google Scholar 

  9. T. Hagerup, Fast Parallel Space Allocation, Estimation and Integer Sorting, Tech. Rep. No. MPI-I-91-106 (1991), Max-Planck-Institut für Informatik, Saarbrücken.

    Google Scholar 

  10. T. Hagerup, The Log-Star Revolution, in Proc. 9th STACS (1992), Springer LNCS, Vol. 577, pp. 259–278.

    MathSciNet  Google Scholar 

  11. P. D. MacKenzie, Load Balancing Requires Ω(log* n) Expected Time, in Proc. 3rd SODA (1992), pp. 94–99.

    Google Scholar 

  12. Y. Matias and U. Vishkin, On Parallel Hashing and Integer Sorting, J. Alg. 12 (1991), pp. 573–606.

    MATH  MathSciNet  Google Scholar 

  13. Y. Shiloach and U. Vishkin, An O(log n) Parallel Connectivity Algorithm, J. Alg. 3 (1982), pp. 57–67.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan M. Havel Václav Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bast, H., Dietzfelbinger, M., Hagerup, T. (1992). A perfect parallel dictionary. In: Havel, I.M., Koubek, V. (eds) Mathematical Foundations of Computer Science 1992. MFCS 1992. Lecture Notes in Computer Science, vol 629. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-55808-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-55808-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55808-8

  • Online ISBN: 978-3-540-47291-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics