Abstract
We describe new randomized parallel algorithms for the problems of interval allocation, construction of static dictionaries, and maintenance of dynamic dictionaries. All of our algorithms run optimally in constant time with high probability. Our main result is the construction of what we call a perfect dictionary, a scheme that allows p processors implementing a set M in space proportional to ¦M¦ to process batches of p insert, delete, and lookup instructions on M in constant time pet batch.
Our best results are obtained for a new variant of the CRCW PRAM model of computation called the OR PRAM. For other variants of the CRCW PRAM we show slightly weaker results, with some resource bounds increased by a factor of ⊖(logk n), where k ∈ ℕ is fixed but arbitrarily large.
Supported in part by DFG grant Me 872/1-4.
Supported in part by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfsmethoden und Parallelität, and in port by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project ALGOM).
Preview
Unable to display preview. Download preview PDF.
References
H. Bast and T. Hagerup, Fast and Reliable Parallel Hashing, manuscript. A preliminary version appeared in Proc. 3rd SPAA (1991), pp. 50–61.
O. Berkman and U. Vishkin, Recursive *-Tree Parallel Data-Structure, in Proc. 30th FOCS (1989), pp. 196–202.
R. Cole and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades: Micro and Macro Techniques for Designing Parallel Algorithms, in Proc. 18th STOC (1986), pp. 206–219.
M. Dietzfelbinger and F. Meyer auf der Heide, Dynamic Hashing in Real Time, in Informatik: Festschrift zum 60. Geburtstag von Günter Hotz (1992), Teubner-Texte zur Informatik, Band 1, Teubner, Stuttgart (a preliminary version appeared in Proc. 17th ICALP (1990), Springer LNCS, Vol. 443, pp. 6–19).
M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a Sparse Table with O(1) Worst Case Access Time, J. ACM 31 (1984), pp. 538–544.
J. Gil, Y. Matias, and U. Vishkin, Towards a Theory of Nearly Constant Time Parallel Algorithms, in Proc. 32nd FOCS (1991), pp. 698–710.
M. T. Goodrich, Using Approximation Algorithms to Design Parallel Algorithms that May Ignore Processor Allocation, in Proc. 32nd FOCS (1991), pp. 711–722.
V. Grolmusz and P. Ragde, Incomparability in Parallel Computation, in Proc. 28th FOCS (1987), pp. 89–98.
T. Hagerup, Fast Parallel Space Allocation, Estimation and Integer Sorting, Tech. Rep. No. MPI-I-91-106 (1991), Max-Planck-Institut für Informatik, Saarbrücken.
T. Hagerup, The Log-Star Revolution, in Proc. 9th STACS (1992), Springer LNCS, Vol. 577, pp. 259–278.
P. D. MacKenzie, Load Balancing Requires Ω(log* n) Expected Time, in Proc. 3rd SODA (1992), pp. 94–99.
Y. Matias and U. Vishkin, On Parallel Hashing and Integer Sorting, J. Alg. 12 (1991), pp. 573–606.
Y. Shiloach and U. Vishkin, An O(log n) Parallel Connectivity Algorithm, J. Alg. 3 (1982), pp. 57–67.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bast, H., Dietzfelbinger, M., Hagerup, T. (1992). A perfect parallel dictionary. In: Havel, I.M., Koubek, V. (eds) Mathematical Foundations of Computer Science 1992. MFCS 1992. Lecture Notes in Computer Science, vol 629. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-55808-X_11
Download citation
DOI: https://doi.org/10.1007/3-540-55808-X_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55808-8
Online ISBN: 978-3-540-47291-9
eBook Packages: Springer Book Archive