Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some features of binary block codes for correcting asymmetric errors

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 673))

Abstract

Binary block codes for correcting asymmetric errors are called binary AsEC block codes. With the properties of perfect codes for the binary symmetric channel in mind, natural definitions of perfect, weakly perfect and uniformly weakly perfect binary AsEC block codes are given and their properties are studied.

It is shown that a perfect asymmetric-error-correcting code is trivial or is equal to the repetition code. Also, it is proved that any weakly perfect code which is nontrivial can always be enlarged to a bigger code of the same length and the same distance. As necessary ingredients for the proofs of those two results, several related properties of codes for correcting asymmetric errors are studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Constantin, S. D., Rao, T.R.M.: On the theory of binary asymmetric error correcting codes. Information and Contr. 40, 20–36, 1979

    Google Scholar 

  2. Etzion, T.: New lower bounds for asymmetric and unidirectional codes. IEEE Trans. Inform. Theory, IT-37, 1696–1704, Nov. 1991

    Google Scholar 

  3. Fang, G., van Tilborg, H. C. A.: Bounds and Constructions of Asymmetric or Unidirectional Error-Correcting Codes. Applicable Algebra in Engineering, Communication and Computing, 3(4), 269–300, Dec. 1992

    Google Scholar 

  4. -: New tables of AsEC and UEC codes. Report 91-WSK-02, Eindhoven University of Technology, The Netherlands, August 1991

    Google Scholar 

  5. Fang, G., van Tilborg, H. C. A., Sun, F. W.: Weakly perfect binary block codes for correcting asymmetric errors. Proc. of the International Symposium on Communications, Taiwan, Tainan, 57–60, Dec, 1991

    Google Scholar 

  6. Goldbaum, I. Y.: Estimate for the number of signals in codes correcting nonsymmetric errors (in Russian). Automat. Telemekh., 32, 94–97, 1971 (English translation: Automat. Rem. Control, 32, 1783–1785, 1971)

    Google Scholar 

  7. Kim, W. H., Freiman, C. V.: Single error correcting codes for asymmetric channels. IRE Trans. Information Theory, IT-5, 62–66, June 1959

    Google Scholar 

  8. Kirkman, T. P.: On a problem in combinations. Cambridge and Dublin Math. J., 2, 191–204, 1847

    Google Scholar 

  9. Kløve, T.: Upper bounds on codes correcting asymmetric errors. IEEE Trans. Inform. Theory, IT-27, 128–131, Jan. 1981

    Google Scholar 

  10. -: Error correcting codes for the asymmetric channel. Rep. 18-09-07-81, Dept. Mathematics, University of Bergen, Norway, July 1981

    Google Scholar 

  11. Macwilliams, F. J., Sloane, N. J. A.: The Theory of Error-Correcting Codes. Amsterdam: North-Holland, 1979

    Google Scholar 

  12. Rao, T. R. N., Fujiwara, E.: Error-control coding for computer systems. Prentice Hall Series in Computer Engineering, Prentice Hall, 1989

    Google Scholar 

  13. Van Lint, J. H.: A Survey of Perfect Codes. Rocky Mountain J. Math., 5, 199–224, 1975

    Google Scholar 

  14. -: Introduction to Coding Theory. Graduate Texts in Mathematics, 86, New York: Springer-verlag, 1982

    Google Scholar 

  15. Varshamov, R. R.: Some featutes of linear codes that correct asymmetric errors (in Russian). Doklady Akad. Nauk. SSSR 157(3), 546–548, 1964 (English translation: Soviet Physics-Doklady 9, 538–540, Jan. 1965)

    Google Scholar 

  16. Weber, J. H.: private communication

    Google Scholar 

  17. Weber, J. H., de Vroedt, C., Boekee, D. E.: Bounds and constructions for binary codes of length less than 24 and asymmetric distance less than 6. IEEE Trans. Inform. Theory. IT-34, 1321–1331, Sept. 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Cohen Teo Mora Oscar Moreno

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, G., van Tilborg, H.C.A., Sun, F.W., Honkala, I.S. (1993). Some features of binary block codes for correcting asymmetric errors. In: Cohen, G., Mora, T., Moreno, O. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1993. Lecture Notes in Computer Science, vol 673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56686-4_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-56686-4_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56686-1

  • Online ISBN: 978-3-540-47630-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics