Abstract
As a contribution to the recent debate on simple implementations of dictionaries, we present new maintenance algorithms for balanced trees. In terms of code simplicity, our algorithms compare favourably with those for deterministic and probabilistic skip lists.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organization of information. Dokladi Akademia Nauk SSSR, 146(2):1259–1262, 1962.
A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts, 1983. ISBN 0-201-00023-7.
A. Andersson. A note on searching in a binary search tree. Software-Practice and Experience, 21(10):1125–1128, 1991.
A. Andersson, Ch. Icking, R. Klein, and Th. Ottmann. Binary search trees of almost optimal height. Acta Inormatica, 28:165–178, 1990.
R. Bayer. Binary B-trees for virtual memory. In Proc. ACM SIGIFIDET Workshop on Data Description, Access and control, pages 219–235, 1971.
R. Bayer. Symmetrie binary B-trees: Data structure and maintenance algorithms. Acta Informatica, 1(4):290–306, 1972.
S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and Models. The Benjamin/Cummings Publishing Company Inc., 1986. ISBN 0-8053-2162-4.
L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Proc. 19th Ann. IEEE Symp. on Foundations of Computer Science, pages 8–21, 1978.
H. A. Maurer, Th. Ottmann, and H. W. Six. Implementing dictionaries using binary trees of very small height. Information Processing Letters, 5(1):11–14, 1976.
J. I. Munro, Th. Papadakis, and R. Sedgewick. Deterministic skip lists. In Proc. Symp. of Discrete Algorithms, pages 367–375, 1992.
J. Nievergelt and E. M. Reingold. Binary trees of bounded balance. SIAM Journal on Computing, 2(1):33–43, 1973.
H. J. Olivie. A new class of balanced search trees: Half-balanced binary search trees. R. A. I. R. O. Informatique Theoretique, 16:51–71, 1982.
Th. Papadakis. private communication.
W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In Proc. Workshop on Algorithms and Data Structures, WADS '89, Ottawa, pages 437–449, 1989.
N. Wirth. Algorithms and Data Structures. Prentice-Hall, Englewood Cliffs, New Jersey, 1986. ISBN 0-13-022005-1.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Andersson, A. (1993). Balanced search trees made simple. In: Dehne, F., Sack, JR., Santoro, N., Whitesides, S. (eds) Algorithms and Data Structures. WADS 1993. Lecture Notes in Computer Science, vol 709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57155-8_236
Download citation
DOI: https://doi.org/10.1007/3-540-57155-8_236
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57155-1
Online ISBN: 978-3-540-47918-5
eBook Packages: Springer Book Archive