Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On expressive completeness of modal logic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 813))

Included in the following conference series:

  • 150 Accesses

Abstract

We have studied the problem of expressive completeness for modal logic. In case of a simple class of frames, the homogeneous ones, expressive completeness could be shown. Moreover, within a class of special finite hamiltonian binary ramified frames, called wheels, the complete ones have been classified by means of simple numerical invariants.

In the meantime, the question of expressive completeness could be answered for all binary ramified frames. The corresonding results will appear elsewhere.

Certain frames of ramification degree > 2 (e.g. “wheels” W n,k,l) are unrollable into fan-like structures. For those frames the problem of expressive completeness may be studied in a similar way as in the present note.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, A.: Expressive Completeness Failure in Branching Time Structures, Journal Comp. Syst. Sc. 34 (1987), 27–42

    Google Scholar 

  2. Gabbay,D.: Expressive Functional Completeness in Tense Logic, in U. Mönnich (ed.), Aspects of Philosophical Logic, 1981

    Google Scholar 

  3. Gabbay,D.; Pnueli,A.; Shelah,S.; Stavi,J.: On the Temporal Analysis of Fairness, Proc. 7th Ann. ACM Sympos. PoPL, 1980, 163–173

    Google Scholar 

  4. Goldblatt, R.: Logics of Time and Computation, CSLI Lecture Notes, No. 7, Stanford 1987

    Google Scholar 

  5. Hafer,T.; Thomas,W.: Computational Tree Logic CTL* and Path Quantifiers in the Monadic Theory of the Binary Tree, in T. Ottmann (ed.), ICALP 1987, LNSC 267, 1987

    Google Scholar 

  6. Heinemann, B.: A note on Expressive Completeness of Modal Logic, Informatik-Berichte Nr. 138, Hagen 12/1992

    Google Scholar 

  7. Heinemann, B.: Some Comments on Expressiveness of Modal Logic, Informatik-Berichte Nr. 147, Hagen 10/1993

    Google Scholar 

  8. Heinemann, B.: Modal Logic on Wheels, Informatik-Berichte Nr. 151, Hagen 12/1993

    Google Scholar 

  9. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order, Ph.D. Thesis, University of California, Los Angeles, 1968

    Google Scholar 

  10. Schlingloff, B.-H.: On the Expressive Power of Modal Logics on Trees, A. Nerode, M. Taitslin (eds.), LFCS — TVER '92, LNCS 620, 1992

    Google Scholar 

  11. Thomason, S.K.: Reduction of second-order logic to modal logic I, Zeit.Math.Logik Grundl. Math. 21, 107–114

    Google Scholar 

  12. Wolper, P.: Temporal Logic Can Be More Expressive, Information and Control 56 (1983), 72–99

    Google Scholar 

  13. van Benthem, J.F.A.K.: Modal Logic and Classical Logic, Bibliopolis, Napoli, 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Anil Nerode Yu. V. Matiyasevich

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinemann, B. (1994). On expressive completeness of modal logic. In: Nerode, A., Matiyasevich, Y.V. (eds) Logical Foundations of Computer Science. LFCS 1994. Lecture Notes in Computer Science, vol 813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58140-5_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-58140-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58140-6

  • Online ISBN: 978-3-540-48442-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics