Abstract
We propose a new algorithm which allows for the identification of any stochastic deterministic regular language as well as the determination of the probabilities of the strings in the language. The algorithm builds the prefix tree acceptor from the sample set and merges systematically equivalent states. Experimentally, it proves very fast and the time needed grows only linearly with the size of the sample set.
Work partially supported under grant TIC93-0633-C02-02 from CICYT (Programa Nacional de Tecnologías de la Información y de las Comunicaciones)
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E.M. Gold: Complexity of Automaton Identification from Given Data. Information and Control 37 (1978) 302–320.
D. Angluin: Identifying Languages from Stochastic Examples. Internal Report YALEU /DCS /RR-614 (1988).
F.J. Maryanski and T.L. Booth: Inference of Finite-State Probabilistic Grammars. IEEE Transactions on Computers C26 (1977) 521–536.
A. van der Mude and A. Walker: On the Inference of Stochastic Regular Grammars. Information and Control 38 (1978) 310–329.
A.W. Smith and D. Zipser: Learning Sequential Structure with the Real-Time Recurrent Learning Algorithm. International Journal of Neural Systems 1 (1989) 125–131.
J.B. Pollack: The Induction of Dynamical Recognizers. Machine Learning 7 (1991) 227–252.
C.L. Giles: Learning and Extracting Finite State Automata with Second Order Recurrent Neural Networks. Neural Computation 4 (1992) 393–405.
R.L. Wartous and G.M. Kuhn: Induction of Finite-state Languages Using Second-Order Recurrent Networks. Neural Computation 4 (1992) 406–414.
M.A. Castaño, F. Casacuberta, E. Vidal: Simulation of Stochastic Regular Grammars through Simple Recurrent Networks, in: New Trends in Neural Computation (Eds. J. Mira, J. Cabestany and A. Prieto). Springer Verlag, Lecture Notes in Computer Science 686 (1993) 210–215.
A. Stolcke and S. Omohundro: Hidden Markov Model Induction by Bayesian Model Merging. To appear in: Advances in Neural Information Processing Systems 5 (C.L. Giles, S.J. Hanson and J.D. Cowan eds.) Morgan Kaufman, Menlo Park, California (1993).
J. Oncina and P. García: Inferring Regular Languages in Polynomial Time, in: Pattern Recognition and Image Analysis (N. Pérez de la Blanca, A. Sanfeliu and E. Vidal eds.) World Scientific (1992).
K.S. Fu: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs, N.J. (1982).
J.E. Hopcroft and J.D. Ullman: Introduction to Automata Theory, Languages and Computation. Addison Wesley, Reading, Massachusetts (1979).
W. Hoeffding: Probability inequalities for sums of bounded random variables. American Statistical Association Journal 58 (1963) 13–30.
W. Feller: An introduction to probability theory and its applications. John Wiley and Sons, New York (1950)
A.S. Reber: Implicit Learning of Artificial Grammars. Journal of Verbal Learning and Verbal Behaviour 6 (1967) 855–863.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carrasco, R.C., Oncina, J. (1994). Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds) Grammatical Inference and Applications. ICGI 1994. Lecture Notes in Computer Science, vol 862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58473-0_144
Download citation
DOI: https://doi.org/10.1007/3-540-58473-0_144
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58473-5
Online ISBN: 978-3-540-48985-6
eBook Packages: Springer Book Archive