Abstract
We consider the problem of enumerating all extreme points of a given set P of n points in d dimensions. We present an algorithm with O(n) space and O(nm) time where m is the number of extreme points of P.
We also present an algorithm to compute the depth of each point of the given set of n points in d-dimensions. This algorithm has complexity O(n 2) which significantly improves the O(n 3) complexity of the previously best known deterministic algorithm. It also improves the best known randomized algorithm which has a expected running time of \(O(n^{3 - \frac{2}{{1 + [d/2]}} + \delta } )\) (for any fixed δ>0).
This research is supported by the DFG-Project “Diskrete Probleme”, No. Ot 64/8-1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Agarwal and J. Matousek. Ray shooting and parametric search. In Proc. 21st ACM Symp. on Theory of Computing, pages 517–526, 1992.
S. G. Akl and G. T. Toussaint. A fast convex hull algorithm. Information Processing Letters, 7(5):219–222, 1978.
B. K. Bhattacharya and G. T. Toussaint. Time-and storage-efficient implementation of an optimal convex hull algorithm. Image Vision Computing, 1:140–144, 1983.
K. H. Borgwardt, N. Gaffke, M. Jünger, and G. Reinelt. Computing the convex hull in the euclidean plane in linear expected time. In Applied Geometry and Discrete Mathematics THE VICTOR KLEE FESTSCHRIFT, pages 91–107. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 4, 1991.
B. Chazelle. An optimal convex hull algorithm and new results on cuttings. In Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 29–38, 1991.
B. Chazelle. Optimal algorithms for computing depths and layers. In Proc. 21st Allerton Conference on Communication, Control and Computation, pages 427–436, 1983.
V. Chvátal. Linear Programming. W. H. Freeman, New York, NY, 1983.
K. L. Clarkson. A Las Vegas algorithm for linear programming when the dimension is small. In Proc. 29th IEEE Symp. on Foundations of Computer Science, pages 452–456, 1988.
D. P. Dobkin and S. P. Reiss. The complexity of linear programming. Theoretical Computer Science, 11:1–18, 1980.
M. E. Dyer. Linear time algorithms for two-and three-variable linear programs. SIAM Journal of Computing, 13:31–45, 1984.
H. Edelsbrunner and W. Shi. An O(n log2 h) time algorithm for the three-dimensional convex hull problem. SIAM Journal of Computing, 20:259–277, 1991.
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, EATCS Monographs on Theoretical Computer Science Edition, 1987.
R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1:132–133, 1972.
G. H. Johansen and C. Gram. A simple algorithm for building the 3-d convex hull. BIT, 23:146–160, 1983.
M. Kallay. Convex hull made easy. Information Processing Letters, 22:161–163, 1986.
D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM Journal of Computing, 15:287–299, 1986.
J. Matousek and O. Schwarzkopf. Linear optimization queries. In Proc. 8th ACM Symp. on Computational Geometry, pages 16–25, 1992.
N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the ACM, 31:114–127, 1984.
M. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. Journal of Computer and System Sciences, 23:166–204, 1981.
E. Welzl and R. Seidel, referred to in [17], p. 25.
A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:75–84, 1963.
R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete & Computational Geometry, 6:423–434, 1991.
M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems. In Proc. 9th Symp. on Theoretical Aspects Computer Science, LNCS 577, pages 569–579. Springer-Verlag, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ottmann, T., Schuierer, S., Soundaralakshmi, S. (1995). Enumerating extreme points in higher dimensions. In: Mayr, E.W., Puech, C. (eds) STACS 95. STACS 1995. Lecture Notes in Computer Science, vol 900. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59042-0_105
Download citation
DOI: https://doi.org/10.1007/3-540-59042-0_105
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59042-2
Online ISBN: 978-3-540-49175-0
eBook Packages: Springer Book Archive