Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Three-dimensional pattern matching in protein structure analysis

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 937))

Included in the following conference series:

Abstract

Many pattern-matching problems that arise in “one dimension” in the analysis of genomic sequences have three-dimensional analogs in the analysis of protein structures. This report focuses on the identification and matching of common substructures, and treats two problems: the probing of a database of structures with a segment of a protein to identify regions from other proteins with conformations similar to that of the probe, and the determination of the maximal common “rigid subunit” in comparing alternative conformations of a single protein. Approaches based on the representation of structures in terms of lists of coordinates or as a distance matrices are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Melhorn, K., Wagener, H. and Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete Comput. Geom. 3, 237–256 (1988)

    Google Scholar 

  2. Bachar, O., Fischer, D., Nussinov, R. and Wolfson, H.J.: A computer vision based technique for 3-D sequence independent structural comparison of proteins. Prot. Eng. 6, 279–288 (1993)

    Google Scholar 

  3. Balas, E. and Yu, O.S. Finding a maximal clique in an arbitrary graph. SIAM J. Comput. 4 1054–1068 (1986).

    Article  Google Scholar 

  4. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F. Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M. The protein databank: A computer-based archival file for macromolecular structure. J. Mol. Biol. 112, 535–542 (1977)

    PubMed  Google Scholar 

  5. Bron, C. and Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph J. Assoc. Comp. Mach. 16, 575–577 (1973)

    Google Scholar 

  6. Carraghan, R. and Pardalos, P.M. An exact algorithm for the maximum clique problem. Op. Res. Lett. 9, 375–382 (1990)

    Google Scholar 

  7. Carrell, R. W., Stein, P. E., Fermi, G. and Wardell, M. R. Biological implications of a 3å structure of dimeric antithrombin. Structure 2, 257–270 (1994)

    PubMed  Google Scholar 

  8. Crippen, G.M. and Havel, T.F. Distance Geometry and Molecular Conformation. New York: John Wiley and Sons, 1988

    Google Scholar 

  9. Fischer, D., Bachar, O., Nussinov, R. and Wolfson H.J. An efficient automated computer vision based technique for detection of three-dimensional structural motifs in proteins. J. Biomol. Str. Dyn. 9, 769–789 (1992).

    Google Scholar 

  10. Geoffrion, A.M. Integer programming by implicit enumeration and Balas' method. SIAM Review 9 (1967) 178–190

    Google Scholar 

  11. Gerstein, M., Lesk, A. M. and Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994)

    PubMed  Google Scholar 

  12. Gusfield, D. and Pitt, L. Equivalent approximation algorithms for node cover. Inf. Proc. Lett. 22, 291–294 (1986)

    Google Scholar 

  13. Guo, X. Three dimensional moment invariants under rigid transformation. In, Computer Analysis of Images and Patterns, D. Chetverikov and W. G. Kropatsch (eds.). Springer-Verlag, Berlin, 1993, pp. 518–522

    Google Scholar 

  14. Golub, G. and Van Loan, C.F. Matrix Computations. 2nd Ed. Baltimore, The Johns Hopkins University Press, 1989, Chap. 12

    Google Scholar 

  15. Grindley H., Artymiuk P.J., Rice D. and Willett P. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol. 229 707–721 (1993).

    PubMed  Google Scholar 

  16. Mitchell E.M., Artymiuk P.J., Rice D.W. and Willett P. Use of techniques from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212 151–166 (1989).

    Google Scholar 

  17. Hammer, P. and Rudeanu, S. Boolean methods in operations research and related areas. New York, Springer-Verlag, 1968.

    Google Scholar 

  18. Jones, T.A. and Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986)

    PubMed  Google Scholar 

  19. Karpen, M.E., de Haseth, P.L. and Neet, K.E. Comparing short protein substructures by a method based on backbone torsion angles. Proteins: Structure, Function, Genetics 6, 155–167 (1989)

    Google Scholar 

  20. Lesk, A.M. A FORTRAN program for the solution of simultaneous linear boolean inequalities by the algorithm of Hammer and Rudeanu J. Comp. Phys. 12 (1973) 150–152.

    Google Scholar 

  21. Lesk, A.M. Protein Architecture: A Practical Approach. IRL Press, Oxford, 1991.

    Google Scholar 

  22. Lesk, A.M. Computational Molecular Biology. In: Encyclopedia of Computer Science and Technology A. Kent and J.G. Williams, (eds.) New York, Marcel Dekker, Inc. 1994, Volume 31, pp. 101–165.

    Google Scholar 

  23. Levine, M., Stuart, D. and Williams, J. A method for systematic comparison of the three-dimensional structures of proteins and some results. Acta crystallographica A40, 600–610 (1984)

    Google Scholar 

  24. Liebman, M. N., Venanzi, C.A., Weinstein, H., Structural analysis of carboxypeptidase A and its complexes with inhibitors as a basis for modelling enzyme recognition and specificity. Biopolymers 24, 1721–1758 (1985)

    PubMed  Google Scholar 

  25. Maiorov, V.N. and Crippen, G. M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 235, 625–634 (1994).

    PubMed  Google Scholar 

  26. Nichols, W.L, Rose, G.D., Ten Eyck, L.F. and Zimm, B.H. Rigid Domains in Proteins: An Algorithmic Approach to their Identification. Proteins, in press (1995).

    Google Scholar 

  27. Parker, R.G. and Rardin, R.L. Discrete Optimization. Academic Press, New York, 1988.

    Google Scholar 

  28. Pastore, A., Atkinson, R.A., Saudek, V. and Williams, R.J.P. Topological mirror images in protein structure computation: an underestimated problem. Proteins 10, 22–32 (1991).

    PubMed  Google Scholar 

  29. Rustici, M. and Lesk, A.M. Three-dimensional searching for recurrent structural motifs in databases of protein structures. J. Comp. Biol. 1, 121–132 (1994)

    Google Scholar 

  30. Willett, P. Three-Dimensional Chemical Structure Handling. Research Studies Press, Taunton, Somerset, U.K. (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zvi Galil Esko Ukkonen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lesk, A.M. (1995). Three-dimensional pattern matching in protein structure analysis. In: Galil, Z., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 1995. Lecture Notes in Computer Science, vol 937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60044-2_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-60044-2_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60044-2

  • Online ISBN: 978-3-540-49412-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics