Abstract
A general linear spatial database model is presented in which both the representation and the manipulation of non-spatial data is based on first-order logic over the real numbers with addition. We first argue the naturalness of our model and propose it as a general framework to study and compare linear spatial database models. However, we also establish that no reasonable safe extension of our data manipulation language can be complete for the linear spatial queries in that even very simple queries such as deciding colinearity or computing convex hull of a finite set of points cannot be expressed. We show that this fundamental result has serious ramifications for the way in which query languages for linear spatial database models have to be designed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Afrati, S. Cosmadakis, S. Grumbach, and G. Kuper, “Linear Versus Polynomial Constraints in Database Query Languages” in Proceedings 2nd Int'l Workshop on Principles and Practice of Constraint Programming (Rosario, WA), A. Borning, ed., Lecture Notes in Computer Science, vol. 874, Springer-Verlag, Berlin, 1994, pp. 181–192.
W.G. Aref and H. Samet, “Extending a Database with Spatial Operations” in Proceedings 2nd Symposium on Advances in Spatial Databases, O. Günther, H.-J. Schek, eds., Lecture Notes in Computer Science, vol. 525, Springer-Verlag, Berlin, 1991, pp. 299–319.
D.S. Arnon, “Geometric Reasoning with Logic and Algebra” Artificial Intelligence, 37, 1988, pp. 37–60.
J. Bochnak, M. Coste, and M.F. Roy, Géométrie algébrique réelle, in Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 12, Springer-Verlag, Berlin, 1987.
A. Brodsky, J. Jaffar, and M.J. Maher, “Toward Practical Constraint Databases” in Proceedings 19th Int'l Conf. on Very Large Databases (Dublin, Ireland), 1993, pp. 567–580.
A. Brodsky and Y. Kornatzky, “The LyriC Language: Querying Constraint Objects” in Proceedings Post-ILPS'94 Workshop on Constraints and Databases (Ithaca, NY), 1994.
A. BrØndsted, An Introduction to Convex Polytopes, in Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York, 1983.
I. Carlbom, “An Algorithm for Geometric Set Operations Using Cellular Subdivision Techniques” IEEE Computer Graphics and Applications, 7:5, 1987, pp. 44–55.
A. Chandra and D. Harel, “Computable Queries for Relational Database Systems” Journal of Computer and System Sciences, 21:2, 1980, pp. 156–178.
S.S. Cosmadakis and G.M. Kuper, “Expressiveness of First-Order Constraint Languages” Technical Report, ECRC-94-13, European Computer-Industry Research Centre, Munich, 1994.
G.E. Collins, “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition” in Proceedings 2nd GI Conf. on Automata Theory and Formal Languages (Kaiserslautern, Germany), H. Brakhage, ed., Lecture Notes in Computer Science, vol. 33, 1975, pp. 134–183.
J. Nievergelt and M. Freeston, eds., Special issue on spatial data, Computer Journal, 37:1, 1994.
M.J. Egenhofer, “A Formal Definition of Binary Topological Relationships” in Proceedings Foundations of Data Organization and Algorithms, W. Litwin and H.-J. Schek, eds., Lecture Notes in Computer Science, vol. 367, Springer-Verlag, Berlin, 1989, pp. 457–472.
M.J. Egenhofer, “Why not SQL!”, Int'l J. on Geographical Information Systems, 6:2, 1992, pp. 71–85.
O. Günther, ed., Efficient Structures for Geometric Data Management, in Lecture Notes in Computer Science, vol. 337, Springer-Verlag, Berlin, 1988.
R.H. Güting, “Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems” in Advances in Database Technology—EDBT '88, Proceedings Int'l Conf. on Extending Database Technology (Venice, Italy), J.W. Schmidt, S. Ceri, and M. Missikoff, eds., Lecture Notes in Computer Science, vol. 303, Soringer-Verlag, Berlin, 1988, pp. 506–527.
R.H. Güting, “Gral: An Extensible Relational Database System for Geometric Applications” in Proceedings 15th Int'l Conf. on Very Large Databases (Amsterdam, the Netherlands), 1989, pp. 33–34.
R.H. Güting, “An Introduction to Spatial Database Systems” VLDB-Journal, 3:4, 1994, pp. 357–399.
T. Huynh, C. Lassez, and J.-L. Lassez. Fourier Algorithm Revisited. In Proceedings 2nd Int'l Conf. on Algebraic an Logic Programming, H. Kirchner and W. Wechler, eds. Lecture Notes in Computer Science, volume 463. Springer Verlag, Berlin, 1990, pp. 117–131.
J. Heintz, T. Recio, and M.F. Roy. “Algorithms in Real Algebraic Geometry and Applications to Computational Geometry” in Discrete and Computational Geometry, W. Steiger, J. Goodman, and R. Pollack, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 6, AMS-ACM, 1991, pp. 137–163.
J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publ. Co., Reading, MA, 1979, pp. 355–357.
P.C. Kanellakis and D.Q. Goldin, “Constraint Programming and Database Query Languages” in Proceedings 2nd Conf. on Theoretical Aspects of Computer Software, M. Hagiya and J.C. Mitchell, eds., Lecture Notes in Computer Science, vol. 789, Springer-Verlag, Berlin, 1994.
P.J. Kelly and M.L. Weiss. Geometry and Convexity: a Study in Mathematical Methods, J. Wiley and Sons, New York, 1979.
P.C. Kanellakis, G.M. Kuper and P.Z. Revesz, “Constraint Query Languages” Journal of Computer and System Sciences, to appear, also in Proceedings 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, TN), 1990, pp. 299–313.
J.-L. Lassez, “Querying Constraints” in Proceedings 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, TN), 1990, pp. 288–298.
M. Liebling and A. Prodon, “Algorithmic Geometry” in Scientific Visualization and Graphics Simulation, D. Thalmann, ed., J. Wiley and Sons. pp. 14–25.
P. McMullen and G.C. Shephard, Convex Polytopes and the Upper Bound Conjecture, University Press, Cambridge, 1971.
J. Paredaens, J. Van den Bussche, and D. Van Gucht, “Towards a Theory of Spatial Database Queries” in Proceedings 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Minneapolis, MN), 1994. pp. 279–288.
N. Pissinou, R. Snodgrass, R. Elmasri, I. Mumick, T. özsu, B. Pernici, A. Segef. B. Theodoulidis, and U. Dayal, “Towards an Infrastructure for Temporal Databases” SIGMOD Records, 23:1, 1994, pp. 35–51.
F.P. Preparata and D.E. Muller. “Finding the Intersection of n Half-Spaces in Time O(nlogn)” Theoretical Computer Science, 8, 1979, pp. 45–55.
L.K. Putnam and P.A. Subrahmanyan, “Boolean Operations on n-Dimensional Objects” IEEE Computer Graphics and Applications, 6:6, 1986, pp. 43–51.
E. Robertson, personal communications, 1994.
N. Roussopoulos, C. Faloutsos, and T. Sellis, “An Efficient Pictorial Database System for PSQL” IEEE Transactions on Software Engineering, 14:5, 1988, pp. 639–650.
W. Schwabhauser, W. Szmielew, and A. Tarski. Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.
P. Svensson and Z. Huang, “Geo-Sal: A Query Language for Spatial Data Analysis” in Proceedings 2nd Symposium on Advances in Spatial Databases, O. Günther and H.-J. Schek, eds. Lecture Notes in Computer Science, vol. 525. Springer-Verlag, Berlin, 1991, pp. 119–140.
B. Tilove, “Set Membership Classification: a Unified Approach to Geometric Intersection Problems” IEEE Transactions on Computers, C-29:10, 1980, pp. 874–883.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vandeurzen, L., Gyssens, M., Van Gucht, D. (1995). On the desirability and limitations of linear spatial database models. In: Egenhofer, M.J., Herring, J.R. (eds) Advances in Spatial Databases. SSD 1995. Lecture Notes in Computer Science, vol 951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60159-7_2
Download citation
DOI: https://doi.org/10.1007/3-540-60159-7_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60159-3
Online ISBN: 978-3-540-49536-9
eBook Packages: Springer Book Archive