Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A periodicity theorem on words and applications

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1995 (MFCS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 969))

Abstract

We prove a periodicity theorem on words that has strong analogies with the Critical Factorization theorem and we show three applications of it.

Work partially supported by the ESPRIT II Basic Research Actions Program of the EC under Project ASMICS 2 (contract No. 6317).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crochemore M. and Rytter W., “Squares, Cubes and Time-Space Efficient String-Searching”, Tech. Rep. LITP 91.47 (July 1991).

    Google Scholar 

  2. Currie J. D., “Open Problems in Pattern Avoidance” Amer. Math. Montly, 100, pp. 790–793, October 1993.

    Google Scholar 

  3. Currie J. D., “On the Structure and Extendibility of k-Power Free Words”, Preprint, 1995.

    Google Scholar 

  4. Currie J. D., Shelton R., Private Communication 1995.

    Google Scholar 

  5. Currie J. D., Shelton R., “Cantor Sets and Dejean's Conjecture”, Preprint 1995.

    Google Scholar 

  6. Cesari Y. and Vincent M. “Une Caractérisation des Mots Périodiques” C. R. Acad. Sc. Paris, t. 286 (19 juin 1978) Série A pp. 1175–1177.

    Google Scholar 

  7. de Luca A., “A Combinatorial Property of the Fibonacci Words”, Inform. Process. Lett., 12 nℴ4 (1981), pp. 195–195.

    Google Scholar 

  8. Duval J. P., “Périodes et Répetitions des Mots du Monoide Libre” Theor. Comp. Science 9 (1979) pp. 17–26.

    Google Scholar 

  9. Fife E.D., “Binary Sequence which contains no BBb” Trans. Amer. Math. Society 261 (1) (1980), 115–136.

    Google Scholar 

  10. Galil Z. and Seiferas J., “Time-Space Optimal String Matching” J. of Computer and Sys. Sciences 26 (1983), pp. 280–294.

    Google Scholar 

  11. Lothaire M., “Combinatorics on Words”, Addison Wesley, vol. 17 Encidopedia of Matematics and its Applications (1983).

    Google Scholar 

  12. Mignosi F. Pirillo G., “Repetitions in the Fibonacci Infinite Word” RAIRO Theor. Informatics and Applications, vol 26, nℴ 3, (1992), pp. 199–204.

    Google Scholar 

  13. Restivo A. and Salemi S., “Overlap Free Words on Two Symbols” Lecture Notes in Comp. Science Vol 192 (1984) pp. 198–206.

    Google Scholar 

  14. Shallit J., Private Communication, 1994.

    Google Scholar 

  15. Shelton R. and Sony R., “Aperiodic Words on the Three Symbols 1, 2, 3”, J. Reine Angew. Math. 321 (1982), pp. 195–209, in Combinatorics on Words, Cumming L. ed. (Academic Press, New York), pp. 101–118 (1993), J. Reine Angew. Math. 330 (1984), pp. 44–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jiří Wiedermann Petr Hájek

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mignosi, F., Restivo, A., Salemi, S. (1995). A periodicity theorem on words and applications. In: Wiedermann, J., Hájek, P. (eds) Mathematical Foundations of Computer Science 1995. MFCS 1995. Lecture Notes in Computer Science, vol 969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60246-1_140

Download citation

  • DOI: https://doi.org/10.1007/3-540-60246-1_140

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60246-0

  • Online ISBN: 978-3-540-44768-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics